- home
- Search
- Energy Research
- 13. Climate action
- CH
- IN
- French
- Energy Research
- 13. Climate action
- CH
- IN
- French
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Journal d’Economie, de Management, d’Environnement et de Droit Authors: Himangana Gupta;Climate change, adaptation and sustainable development are inextricably linked. These issues haunt the developing world Parties to the multilateral environmental agreements, who are trying hard to implement policies and plans within their national jurisdictions. These policies are required to be linked with overall economic growth and development objectives. With limited technical workforce and financial capacity, the developing world is facing a grave challenge of attaining inclusive growth and sustainable development, besides developing resilience to climate change. A parallel stream of activities for these three objectives is not the solution for poor countries. Some countries are already on the path of establishing linkages among climate change, development and sustainability activities. However, while grappling with these issues, most are still stuck at different levels of governance. Sustainable Development Goals (SDGs) and Nationally Determined Contributions (NDCs) under the United Nations Framework Convention on Climate Change (UNFCCC) have timelines until 2030. At least 60% of the NDCs, mostly those of the developing countries, contain an adaptation component which is closely linked to sustainable development. Convergence of NDC and SDG goals at the national level will assist in financing NDCs through SDG funds for achieving both mitigation and adaptation goals. The paper discusses barriers to good governance around these issues and opportunities available to link them at the national level. This includes improvement of knowledge base, and mainstreaming finance for both, adaptation and sustainable development, besides serving national needs. The trick is to include adaptation and sustainability into the developmental planning. Journal d’Economie, de Management, d’Environnement et de Droit, Vol 3, No 1 (2020)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48398/imist.prsm/jemed-v3i1.20191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48398/imist.prsm/jemed-v3i1.20191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type , Other literature type 2019Publisher:Zenodo Authors: Trutnevyte, Evelina; Volken, Sandra; Xexakis, Georgios;The factsheets describe 13 electricity supply alternatives that could contribute to the Swiss electricity mix in 2035: (1) three hydropower types, including large dams, large run-of-river, and small hydropower; (2) five new renewable technologies—solar cells (photovoltaics), wind, deep geothermal, woody biomass, and biogas; (3) nuclear power; (4) waste incineration and large natural gas power; (5) net electricity import from abroad (net on the annual basis); and (6) electricity savings and efficiency improvements to reduce the electricity demand. Each technology, its current status, resource potential, and environmental, health, and economic impacts were described qualitatively and quantitatively. The impacts included climate change (CO2equiv); local air pollution (PM10equiv; SOx and NOx); water, landscape, and land use (m2 of land use); flora and fauna; accidental impacts, resource use, and waste (kWh of nonrenewable energy used for 1 kWh of electricity); electricity costs (rappen (Rp.) per kWh); and electricity supply reliability. The impacts were assessed using data from literature, prioritizing the Swiss-specific data as much as possible and including qualitative explanations for non-experts. The factsheets are accompanied by a glossary and a supplementary overview table that applied a five-color indicator system to reflect the severity of impacts across technologies. The factsheets were developed for an informed citizen panel study in July 2017 in Switzerland, described in the following publication: Volken, S.; Xexakis, G.; Trutnevyte, E. Perspectives of Informed Citizen Panel on Low-Carbon Electricity Portfolios in Switzerland and Longer-Term Evaluation of Informational Materials. Environmental Science & Technology 2018 52 (20), 11478-11489, DOI: 10.1021/acs.est.8b01265
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3237679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3237679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2008Embargo end date: 10 Apr 2008 SwitzerlandPublisher:Lausanne, EPFL Authors: Destraz, Blaise;So far in the Twenty-first century the field of people transportation has had numerous setbacks, of these some are related to air pollution and some to the rarefaction of petroleum sources. Studies have been undertaken within this domain for many years now. Hybrid vehicles in which the conventional energy source is kept and an on-board energy source is added are showing themselves to be a potentially good solution in the short term. In these hybrids the vehicle autonomy is assumed by the first energy source and the power constraints are taken upon by the second. Moreover, the storage element adds the possibility to recuperate the braking energy in an optimal way. During the last decade, an important development has come about in the field of energy storage elements. The supercapacitors newly appearing on the scene are power components well suited for an application in transportation domain: their lifetime is over 500,000 cycles and their power density (W/kg) is much higher than for batteries. The present work is concerned with air pollution and energy storage elements and presents the details of using a power assistance system for vehicles. In this case, the auxiliary power energy storage element is on board and is made of supercapacitors. The decreased energy consumption of the vehicle is directly dependant on the vehicle's type, the route driven and the size of the storage element within the vehicle. An optimal method of sizing the energy storage element is developed. An application of the principles is presented in three different categories of vehicle: a transportation network fed by catenaries, a diesel-electric vehicle and a light electrical vehicle. In all three cases, the size of the storage elements, the on-board energy control system and the reduction of the vehicle consumption are defined. Following the different methods developed here, it is possible to define the conditions for when a power assistance system can give a real decrease in the vehicle's energy consumption. When an on-board storage element is added in a vehicle, a static converter has to be used. Its main role is to adapt the voltage level between the storage element and the other vehicle propulsion equipment and to control the energy flow on board the vehicle. An interleaved mutichannel continuous-continuous converter operating in a discontinuous conduction mode is especially dedicated to mobile applications. This type of converter is lighter and smaller in volume, yet its efficiency is greater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-4083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-4083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Journal d’Economie, de Management, d’Environnement et de Droit Authors: Himangana Gupta;Climate change, adaptation and sustainable development are inextricably linked. These issues haunt the developing world Parties to the multilateral environmental agreements, who are trying hard to implement policies and plans within their national jurisdictions. These policies are required to be linked with overall economic growth and development objectives. With limited technical workforce and financial capacity, the developing world is facing a grave challenge of attaining inclusive growth and sustainable development, besides developing resilience to climate change. A parallel stream of activities for these three objectives is not the solution for poor countries. Some countries are already on the path of establishing linkages among climate change, development and sustainability activities. However, while grappling with these issues, most are still stuck at different levels of governance. Sustainable Development Goals (SDGs) and Nationally Determined Contributions (NDCs) under the United Nations Framework Convention on Climate Change (UNFCCC) have timelines until 2030. At least 60% of the NDCs, mostly those of the developing countries, contain an adaptation component which is closely linked to sustainable development. Convergence of NDC and SDG goals at the national level will assist in financing NDCs through SDG funds for achieving both mitigation and adaptation goals. The paper discusses barriers to good governance around these issues and opportunities available to link them at the national level. This includes improvement of knowledge base, and mainstreaming finance for both, adaptation and sustainable development, besides serving national needs. The trick is to include adaptation and sustainability into the developmental planning. Journal d’Economie, de Management, d’Environnement et de Droit, Vol 3, No 1 (2020)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48398/imist.prsm/jemed-v3i1.20191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48398/imist.prsm/jemed-v3i1.20191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type , Other literature type 2019Publisher:Zenodo Authors: Trutnevyte, Evelina; Volken, Sandra; Xexakis, Georgios;The factsheets describe 13 electricity supply alternatives that could contribute to the Swiss electricity mix in 2035: (1) three hydropower types, including large dams, large run-of-river, and small hydropower; (2) five new renewable technologies—solar cells (photovoltaics), wind, deep geothermal, woody biomass, and biogas; (3) nuclear power; (4) waste incineration and large natural gas power; (5) net electricity import from abroad (net on the annual basis); and (6) electricity savings and efficiency improvements to reduce the electricity demand. Each technology, its current status, resource potential, and environmental, health, and economic impacts were described qualitatively and quantitatively. The impacts included climate change (CO2equiv); local air pollution (PM10equiv; SOx and NOx); water, landscape, and land use (m2 of land use); flora and fauna; accidental impacts, resource use, and waste (kWh of nonrenewable energy used for 1 kWh of electricity); electricity costs (rappen (Rp.) per kWh); and electricity supply reliability. The impacts were assessed using data from literature, prioritizing the Swiss-specific data as much as possible and including qualitative explanations for non-experts. The factsheets are accompanied by a glossary and a supplementary overview table that applied a five-color indicator system to reflect the severity of impacts across technologies. The factsheets were developed for an informed citizen panel study in July 2017 in Switzerland, described in the following publication: Volken, S.; Xexakis, G.; Trutnevyte, E. Perspectives of Informed Citizen Panel on Low-Carbon Electricity Portfolios in Switzerland and Longer-Term Evaluation of Informational Materials. Environmental Science & Technology 2018 52 (20), 11478-11489, DOI: 10.1021/acs.est.8b01265
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3237679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3237679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2008Embargo end date: 10 Apr 2008 SwitzerlandPublisher:Lausanne, EPFL Authors: Destraz, Blaise;So far in the Twenty-first century the field of people transportation has had numerous setbacks, of these some are related to air pollution and some to the rarefaction of petroleum sources. Studies have been undertaken within this domain for many years now. Hybrid vehicles in which the conventional energy source is kept and an on-board energy source is added are showing themselves to be a potentially good solution in the short term. In these hybrids the vehicle autonomy is assumed by the first energy source and the power constraints are taken upon by the second. Moreover, the storage element adds the possibility to recuperate the braking energy in an optimal way. During the last decade, an important development has come about in the field of energy storage elements. The supercapacitors newly appearing on the scene are power components well suited for an application in transportation domain: their lifetime is over 500,000 cycles and their power density (W/kg) is much higher than for batteries. The present work is concerned with air pollution and energy storage elements and presents the details of using a power assistance system for vehicles. In this case, the auxiliary power energy storage element is on board and is made of supercapacitors. The decreased energy consumption of the vehicle is directly dependant on the vehicle's type, the route driven and the size of the storage element within the vehicle. An optimal method of sizing the energy storage element is developed. An application of the principles is presented in three different categories of vehicle: a transportation network fed by catenaries, a diesel-electric vehicle and a light electrical vehicle. In all three cases, the size of the storage elements, the on-board energy control system and the reduction of the vehicle consumption are defined. Following the different methods developed here, it is possible to define the conditions for when a power assistance system can give a real decrease in the vehicle's energy consumption. When an on-board storage element is added in a vehicle, a static converter has to be used. Its main role is to adapt the voltage level between the storage element and the other vehicle propulsion equipment and to control the energy flow on board the vehicle. An interleaved mutichannel continuous-continuous converter operating in a discontinuous conduction mode is especially dedicated to mobile applications. This type of converter is lighter and smaller in volume, yet its efficiency is greater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-4083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-4083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu