- home
- Search
- Energy Research
- 12. Responsible consumption
- 7. Clean energy
- 2. Zero hunger
- DE
- IN
- Sustainability
- Energy Research
- 12. Responsible consumption
- 7. Clean energy
- 2. Zero hunger
- DE
- IN
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Michela Tiboni; Silvia Rossetti; David Vetturi; Vincenza Torrisi; Francesco Botticini; Marco Domenico Schaefer;doi: 10.3390/su13041778
handle: 11381/2892392
How can urban policies and planning approaches help in achieving a safer mobility and carbon reduction in the transport sector? The attention of planners and policy makers towards the promotion of sustainability and reduction of environmental impacts has grown in recent years. This paper investigates the role that Urban Planning plays in the long term towards a safer and climate friendlier mobility, highlighting the need for integrated approaches gathering spatial planning and mobility management. After a review of several urban policies and planning strategies, initiatives, and approaches, mainly based on the urban scale, the paper presents an urban regeneration case study leading to an increase of pedestrian accessibility at the neighborhood level. This can be seen as a support tool to foster sustainable, safe, and climate friendly mobility in cities. The results of the performed analysis show a dependency of accessibility from two different factors: the distribution of services and the capillarity of the soft mobility network, which can contribute to creating a more walkable space.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:[no funder available]Jana Gerta Backes; Laura Schmidt; Jan Bielak; Pamela Del Rosario; Marzia Traverso; Martin Claßen;Due to climate change and current efforts to reduce emissions in the construction sector, this study evaluates and discusses the results of a comparative cradle-to-grave Life Cycle Assessment (LCA), with a main focus on Global Warming Potential for functionally equivalent carbon-reinforced concrete (CRC) and steel-reinforced concrete (SRC) façade panels for the first time. The novelty of this study is the focus on construction waste and, in particular, the worst-case application of non-recycled construction waste. The use of CRC requires a lower concrete thickness than SRC because the carbon fiber reinforcement does not corrode, in contrast to steel reinforcement. Façade panels of the same geometrical dimensions and structural performance were defined as functional units (FU). Assuming an End-of-Life (EoL) scenario of 50% landfill and 50% recycling, the Global Warming Potential (GWP, given in CO2 equivalent (CO2e)) of the CRC façade (411–496 kg CO2e) is shown to perform better than or equal to the SRC façade (492 kg CO2e). Changing the assumption of CRC to a worst-case scenario, going fully to landfill and not being recycled (single life cycle), turns the GWP results in favor of the SRC façade. Assuming a 50-year service life for the SRC façade panel and relativizing the emissions to the years, the more durable CRC façade performs much better. Finally, depending on the system boundary, the assumed EoL and lifetime, CRC can represent a lower-emission alternative to a functionally equivalent component made of SRC. The most important and “novel” result in this study, which also leads to future research opportunities, is that delicate adjustments (especially concerning EoL scenarios and expected service life) can lead to completely different recommendations for decision-makers. Only by combining the knowledge of LCA experts, structural engineers, and builders optimal decisions can be made regarding sustainable materials and building components.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Vitor W. B. Martins; Rosley Anholon; Osvaldo L. G. Quelhas; Walter Leal Filho;doi: 10.3390/su11154140
The main purpose of this article is to present an overview of the applications of sustainable practices in logistic operations performed by Brazilian companies. To reach this objective, the following steps were carried out: (1) a review of the literature on logistics systems and sustainability in logistics activities; (2) the collection of sustainability reports published by companies that perform logistics operations, which are recognized in Brazil; (3) a content analysis of the reports collected and (4) a discussion of the results, cross-checked with the literature and the extrapolation of conclusions. It was possible to identify 22 sustainable practices, and these practices were grouped into five macro areas. The authors of this paper believe that the findings presented here can be useful for professionals and researchers in the implementation of sustainability practices in logistics systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 22 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 GermanyPublisher:MDPI AG Authors: Aleksandra Schwenk-Ferrero; Andrei Andrianov;Is it true that a nuclear technology approach to generate electric energy offers a clean, safe, reliable and affordable, i.e., sustainable option? In principle yes, however a technology impact on the environment strongly depends on the actual implementation bearing residual risks due to technical failures, human factors, or natural catastrophes. A full response is thus difficult and can be given first when the wicked multi-disciplinary issues get well formulated and “resolved”. These problems are lying at the interface between: the necessary R&D effort, the industrial deployment and the technology impact in view of the environmental sustainability including the management of produced hazardous waste. As such, this problem is clearly of multi-dimensional nature. This enormous complexity indicates that just a description of the problem might cause a dilemma. The paper proposes a novel holistic approach applying Multi-Criteria Decision Analysis to assess the potential of nuclear energy systems with respect to a sustainable performance. It shows how to establish a multi-level criteria structure tree and examines the trading-off techniques for scoring and ranking of options. The presented framework allows multi-criteria and multi-group treatment. The methodology can be applied to support any pre-decisional process launched in a country to find the best nuclear and/or non-nuclear option according to national preferences and priorities. The approach addresses major aspects of the environmental footprint of nuclear energy systems. As a case study, advanced nuclear fuel cycles are analyzed, which were previously investigated by the Nuclear Energy Agency (NEA/OECD) expert group WASTEMAN. Sustainability facets of waste management, resource utilization and economics are in focus.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9091623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9091623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Kanwalpreet Kour; Deepali Gupta; Kamali Gupta; Sapna Juneja; Manjit Kaur; Amal H. Alharbi; Heung-No Lee;doi: 10.3390/su14095607
Saffron, also known as “the golden spice”, is one of the most expensive crops in the world. The expensiveness of saffron comes from its rarity, the tedious harvesting process, and its nutritional and medicinal value. Different countries of the world are making great economic growth due to saffron export. In India, it is cultivated mostly in regions of Kashmir owing to its climate and soil composition. The economic value generated by saffron export can be increased manyfold by studying the agronomical factors of saffron and developing a model for artificial cultivation of saffron in any season and anywhere by monitoring and controlling the conditions of its growth. This paper presents a detailed study of all the agronomical variables of saffron that have a direct or indirect impact on its growth. It was found that, out of all the agronomical variables, the important ones having an impact on growth include corm size, temperature, water availability, and minerals. It was also observed that the use of IoT for the sustainable cultivation of saffron in smart cities has been discussed only by very few research papers. An IoT-based framework has also been proposed, which can be used for controlling and monitoring all the important growth parameters of saffron for its cultivation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG null Neha; Gajender Yadav; Rajender Kumar Yadav; Ashwani Kumar; Aravind Kumar Rai; Junya Onishi; Keisuke Omori; Parbodh Chander Sharma;doi: 10.3390/su14074146
Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. The present study evaluated the effectiveness of cut-soiler-constructed rice residue-filled preferential shallow subsurface drainage (PSSD) to improve the drainage function and its effect on the yield, quality and plant–water relations of mustard over 2019–2021. Cut-soiler-simulated drains were made in a semi-controlled lysimeter (2 × 2 × 3; L*W*H m) as the main plot treatment in a double replicated split–split experiment with two soil types (subplot) and three irrigation water salinities (4, 8 and 12 dS m−1) as the sub-sub-plot treatment. The drainage volume of variable salinity (EC), dependent on the total water input, was substantially higher in the rainy season (April to October), i.e., 16.6, 7.76 and 12.0% during 2018, 2019 and 2020, with 1.7, 0.32 and 0.77 kg salt removal per lysimeter, compared to the post-rainy season. The mustard seed, straw and biological yields were improved by 31.4, 14.41 and 18.08%, respectively, due to a positive effect on plant–water relations. The mustard seeds produced in the cut-soiler-treated plots recorded higher oil, crude fiber and protein contents and a lower erucic acid content. The increase in salt load, by higher-salinity irrigation water, was also efficiently managed by using cut-soiler PSSD. It was found that the saline irrigation water up to 12.0 dS m−1 can be used under such PSSD without any extra salt loading. The present study showed the potential of cut-soiler PSSD in root zone salinity management by improving drainage in salt-affected arid regions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xiaogang Pan; Kangli Liu; Jianhua Wang; Yutao Hu; Jianfeng Zhao;doi: 10.3390/su15065480
The promotion of electric vehicles (EVs) is an important measure for dealing with climate change and reducing carbon emissions, which are widely agreed goals worldwide. Being an important operating mode for electric vehicle charging stations in the future, the integrated photovoltaic and energy storage charging station (PES-CS) is receiving a fair amount of attention and discussion. However, how to optimally configure photovoltaic and energy storage capacity to achieve the best economy is essential and a huge challenge to overcome. In this paper, based on the historical data-driven search algorithm, the photovoltaic and energy storage capacity allocation method for PES-CS is proposed, which determines the capacity ratio of photovoltaic and energy storage by analyzing the actual operation data, which is performed while considering the target of maximizing economic benefits. In order to achieve the proposed capacity allocation, the method is as follows: First, the economic benefit model of the charging stations is established, taking the net present value and investment payback period as evaluation indicators; then, by analyzing the operation data of the existing charging station with the target of maximizing economic benefits, the initial configuration capacity is obtained; finally, the capacity configuration is verified through a comprehensive case analysis for the actual operation data. The results show that the capacity configuration obtained through the data analysis features an optimized economic efficiency and photovoltaic utilization. The proposed method can provide a theoretical and practical basis for newly planned or improved large-scale charging stations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 NetherlandsPublisher:MDPI AG Picuno, Caterina; Van Eygen, Emile; Brouwer, Marieke; Kuchta, Kerstin; Thoden van Velzen, Eggo Ulphard;doi: 10.3390/su13126772
handle: 11420/9751
Setting up strategies for a sound management of plastic packaging waste (PPW) is becoming increasingly crucial at many levels of the value chain in Europe. After the very first implementation of an extended producer responsibility scheme in Germany in 1991, many EU Countries followed. This resulted in a complex network of schemes that differ from one member state to another. This paper brings together the three latest studies describing the current flows of PPW across the waste value chain from Austria (reference year 2013), Germany and the Netherlands (reference year 2017). With this aim, the models of the three single studies have been adapted to fit into a common model, allowing to perform a comparative analysis. Although with a relatively comparable product market, the three countries have different management systems (e.g., separate collection systems, target sorting products and treatment of residual waste), reflecting different national strategies to achieve the circular economy targets. Recycling rates (in terms of washed milled goods at the output of the recycling process) for the three countries resulted in 23%, 43% and 30% of the total mass of PPW generated in, respectively, Austria, Germany and the Netherlands. The fraction of mixed recycled plastics, relevant for Germany and the Netherlands only, was determined to be one of the major determinants of the differences in recycling rates. Furthermore, the discussion revolves around new political targets that have the potential to contribute to addressing the issue of tradeoff between quantity and quality of recycled plastics placed on the market, with measures such as design-for-recycling and eco-modulation of EPR fees playing a critical role, while also pointing out the aspects that inevitably hinder closed-loop recycling.
Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:MDPI AG Authors: Arif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; +2 AuthorsArif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; Bhaskar C. S. Chittoori; Abdullah Almajed;doi: 10.3390/su12177019
This study evaluated the efficacy of enzyme induced calcite precipitation (EICP) in restricting the mobility of heavy metals in soils. EICP is an environmentally friendly method that has wide ranging applications in the sustainable development of civil infrastructure. The study examined the desorption of three heavy metals from treated and untreated soils using ethylene diamine tetra-acetic acid (EDTA) and citric acid (C6H8O7) extractants under harsh conditions. Two natural soils spiked with cadmium (Cd), nickel (Ni), and lead (Pb) were studied in this research. The soils were treated with three types of enzyme solutions (ESs) to achieve EICP. A combination of urea of one molarity (M), 0.67 M calcium chloride, and urease enzyme (3 g/L) was mixed in deionized (DI) water to prepare enzyme solution 1 (ES1); non-fat milk powder (4 g/L) was added to ES1 to prepare enzyme solution 2 (ES2); and 0.37 M urea, 0.25 M calcium chloride, 0.85 g/L urease enzyme, and 4 g/L non-fat milk powder were mixed in DI water to prepare enzyme solution 3 (ES3). Ni, Cd, and Pb were added with load ratios of 50 and 100 mg/kg to both untreated and treated soils to study the effect of EICP on desorption rates of the heavy metals from soil. Desorption studies were performed after a curing period of 40 days. The curing period started after the soil samples were spiked with heavy metals. Soils treated with ESs were spiked with heavy metals after a curing period of 21 days and then further cured for 40 days. The amount of CaCO3 precipitated in the soil by the ESs was quantified using a gravimetric acid digestion test, which related the desorption of heavy metals to the amount of precipitated CaCO3. The order of desorption was as follows: Cd > Ni > Pb. It was observed that the average maximum removal efficiency of the untreated soil samples (irrespective of the load ratio and contaminants) was approximately 48% when extracted by EDTA and 46% when extracted by citric acid. The soil samples treated with ES2 exhibited average maximum removal efficiencies of 19% and 10% when extracted by EDTA and citric acid, respectively. It was observed that ES2 precipitated a maximum amount of calcium carbonate (CaCO3) when compared to ES1 and ES3 and retained the maximum amount of heavy metals in the soil by forming a CaCO3 shield on the heavy metals, thus decreasing their mobility. An approximate improvement of 30% in the retention of heavy metal ions was observed in soils treated with ESs when compared to untreated soil samples. Therefore, the study suggests that ESs can be an effective alternative in the remediation of soils contaminated with heavy metal ions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Nivedita Sana; Dali Naidu Arnepalli; Chandraraj Krishnan;doi: 10.3390/su15010505
The conversion of methane into liquid biofuels using methane-consuming bacteria, known as methanotrophs, contributes to sustainable development, as it mitigates the problem of climate change caused by greenhouse gases and aids in producing cleaner and renewable energy. In the present research, an efficient methanotroph, Methylosarcina sp. LC-4, was studied as a prospective organism for biodiesel production using methane. The methane uptake rate by the organism was enhanced 1.6 times and 2.35 times by supplementing LC-4 with micronutrients, such as copper and tungstate, respectively. This unique ability of the isolated organism enables the deployment of methanotrophs-based processes in various industrial applications. A Plackett–Burman statistical (PBD) design was used to quantify the role of the micronutrients and other media components present in the nitrate minimal salt media (NMS) in biomass and fatty acid methyl esters (FAME) yields. Nitrate, phosphate, and tungstate had a positive effect, whereas copper, magnesium, and salinity had a negative effect. The modified NMS media, formulated according to the results from the PBD analysis, increased the FAME yield (mg/L) by 85.7%, with the FAME content of 13 ± 1% (w/w) among the highest reported in methanotrophs. The obtained FAME consisted majorly (~90%) of C14–C18 saturated and monounsaturated fatty acids, making it suitable for use as biodiesel.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Michela Tiboni; Silvia Rossetti; David Vetturi; Vincenza Torrisi; Francesco Botticini; Marco Domenico Schaefer;doi: 10.3390/su13041778
handle: 11381/2892392
How can urban policies and planning approaches help in achieving a safer mobility and carbon reduction in the transport sector? The attention of planners and policy makers towards the promotion of sustainability and reduction of environmental impacts has grown in recent years. This paper investigates the role that Urban Planning plays in the long term towards a safer and climate friendlier mobility, highlighting the need for integrated approaches gathering spatial planning and mobility management. After a review of several urban policies and planning strategies, initiatives, and approaches, mainly based on the urban scale, the paper presents an urban regeneration case study leading to an increase of pedestrian accessibility at the neighborhood level. This can be seen as a support tool to foster sustainable, safe, and climate friendly mobility in cities. The results of the performed analysis show a dependency of accessibility from two different factors: the distribution of services and the capillarity of the soft mobility network, which can contribute to creating a more walkable space.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:[no funder available]Jana Gerta Backes; Laura Schmidt; Jan Bielak; Pamela Del Rosario; Marzia Traverso; Martin Claßen;Due to climate change and current efforts to reduce emissions in the construction sector, this study evaluates and discusses the results of a comparative cradle-to-grave Life Cycle Assessment (LCA), with a main focus on Global Warming Potential for functionally equivalent carbon-reinforced concrete (CRC) and steel-reinforced concrete (SRC) façade panels for the first time. The novelty of this study is the focus on construction waste and, in particular, the worst-case application of non-recycled construction waste. The use of CRC requires a lower concrete thickness than SRC because the carbon fiber reinforcement does not corrode, in contrast to steel reinforcement. Façade panels of the same geometrical dimensions and structural performance were defined as functional units (FU). Assuming an End-of-Life (EoL) scenario of 50% landfill and 50% recycling, the Global Warming Potential (GWP, given in CO2 equivalent (CO2e)) of the CRC façade (411–496 kg CO2e) is shown to perform better than or equal to the SRC façade (492 kg CO2e). Changing the assumption of CRC to a worst-case scenario, going fully to landfill and not being recycled (single life cycle), turns the GWP results in favor of the SRC façade. Assuming a 50-year service life for the SRC façade panel and relativizing the emissions to the years, the more durable CRC façade performs much better. Finally, depending on the system boundary, the assumed EoL and lifetime, CRC can represent a lower-emission alternative to a functionally equivalent component made of SRC. The most important and “novel” result in this study, which also leads to future research opportunities, is that delicate adjustments (especially concerning EoL scenarios and expected service life) can lead to completely different recommendations for decision-makers. Only by combining the knowledge of LCA experts, structural engineers, and builders optimal decisions can be made regarding sustainable materials and building components.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Vitor W. B. Martins; Rosley Anholon; Osvaldo L. G. Quelhas; Walter Leal Filho;doi: 10.3390/su11154140
The main purpose of this article is to present an overview of the applications of sustainable practices in logistic operations performed by Brazilian companies. To reach this objective, the following steps were carried out: (1) a review of the literature on logistics systems and sustainability in logistics activities; (2) the collection of sustainability reports published by companies that perform logistics operations, which are recognized in Brazil; (3) a content analysis of the reports collected and (4) a discussion of the results, cross-checked with the literature and the extrapolation of conclusions. It was possible to identify 22 sustainable practices, and these practices were grouped into five macro areas. The authors of this paper believe that the findings presented here can be useful for professionals and researchers in the implementation of sustainability practices in logistics systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 22 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 GermanyPublisher:MDPI AG Authors: Aleksandra Schwenk-Ferrero; Andrei Andrianov;Is it true that a nuclear technology approach to generate electric energy offers a clean, safe, reliable and affordable, i.e., sustainable option? In principle yes, however a technology impact on the environment strongly depends on the actual implementation bearing residual risks due to technical failures, human factors, or natural catastrophes. A full response is thus difficult and can be given first when the wicked multi-disciplinary issues get well formulated and “resolved”. These problems are lying at the interface between: the necessary R&D effort, the industrial deployment and the technology impact in view of the environmental sustainability including the management of produced hazardous waste. As such, this problem is clearly of multi-dimensional nature. This enormous complexity indicates that just a description of the problem might cause a dilemma. The paper proposes a novel holistic approach applying Multi-Criteria Decision Analysis to assess the potential of nuclear energy systems with respect to a sustainable performance. It shows how to establish a multi-level criteria structure tree and examines the trading-off techniques for scoring and ranking of options. The presented framework allows multi-criteria and multi-group treatment. The methodology can be applied to support any pre-decisional process launched in a country to find the best nuclear and/or non-nuclear option according to national preferences and priorities. The approach addresses major aspects of the environmental footprint of nuclear energy systems. As a case study, advanced nuclear fuel cycles are analyzed, which were previously investigated by the Nuclear Energy Agency (NEA/OECD) expert group WASTEMAN. Sustainability facets of waste management, resource utilization and economics are in focus.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9091623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9091623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Kanwalpreet Kour; Deepali Gupta; Kamali Gupta; Sapna Juneja; Manjit Kaur; Amal H. Alharbi; Heung-No Lee;doi: 10.3390/su14095607
Saffron, also known as “the golden spice”, is one of the most expensive crops in the world. The expensiveness of saffron comes from its rarity, the tedious harvesting process, and its nutritional and medicinal value. Different countries of the world are making great economic growth due to saffron export. In India, it is cultivated mostly in regions of Kashmir owing to its climate and soil composition. The economic value generated by saffron export can be increased manyfold by studying the agronomical factors of saffron and developing a model for artificial cultivation of saffron in any season and anywhere by monitoring and controlling the conditions of its growth. This paper presents a detailed study of all the agronomical variables of saffron that have a direct or indirect impact on its growth. It was found that, out of all the agronomical variables, the important ones having an impact on growth include corm size, temperature, water availability, and minerals. It was also observed that the use of IoT for the sustainable cultivation of saffron in smart cities has been discussed only by very few research papers. An IoT-based framework has also been proposed, which can be used for controlling and monitoring all the important growth parameters of saffron for its cultivation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG null Neha; Gajender Yadav; Rajender Kumar Yadav; Ashwani Kumar; Aravind Kumar Rai; Junya Onishi; Keisuke Omori; Parbodh Chander Sharma;doi: 10.3390/su14074146
Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. The present study evaluated the effectiveness of cut-soiler-constructed rice residue-filled preferential shallow subsurface drainage (PSSD) to improve the drainage function and its effect on the yield, quality and plant–water relations of mustard over 2019–2021. Cut-soiler-simulated drains were made in a semi-controlled lysimeter (2 × 2 × 3; L*W*H m) as the main plot treatment in a double replicated split–split experiment with two soil types (subplot) and three irrigation water salinities (4, 8 and 12 dS m−1) as the sub-sub-plot treatment. The drainage volume of variable salinity (EC), dependent on the total water input, was substantially higher in the rainy season (April to October), i.e., 16.6, 7.76 and 12.0% during 2018, 2019 and 2020, with 1.7, 0.32 and 0.77 kg salt removal per lysimeter, compared to the post-rainy season. The mustard seed, straw and biological yields were improved by 31.4, 14.41 and 18.08%, respectively, due to a positive effect on plant–water relations. The mustard seeds produced in the cut-soiler-treated plots recorded higher oil, crude fiber and protein contents and a lower erucic acid content. The increase in salt load, by higher-salinity irrigation water, was also efficiently managed by using cut-soiler PSSD. It was found that the saline irrigation water up to 12.0 dS m−1 can be used under such PSSD without any extra salt loading. The present study showed the potential of cut-soiler PSSD in root zone salinity management by improving drainage in salt-affected arid regions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xiaogang Pan; Kangli Liu; Jianhua Wang; Yutao Hu; Jianfeng Zhao;doi: 10.3390/su15065480
The promotion of electric vehicles (EVs) is an important measure for dealing with climate change and reducing carbon emissions, which are widely agreed goals worldwide. Being an important operating mode for electric vehicle charging stations in the future, the integrated photovoltaic and energy storage charging station (PES-CS) is receiving a fair amount of attention and discussion. However, how to optimally configure photovoltaic and energy storage capacity to achieve the best economy is essential and a huge challenge to overcome. In this paper, based on the historical data-driven search algorithm, the photovoltaic and energy storage capacity allocation method for PES-CS is proposed, which determines the capacity ratio of photovoltaic and energy storage by analyzing the actual operation data, which is performed while considering the target of maximizing economic benefits. In order to achieve the proposed capacity allocation, the method is as follows: First, the economic benefit model of the charging stations is established, taking the net present value and investment payback period as evaluation indicators; then, by analyzing the operation data of the existing charging station with the target of maximizing economic benefits, the initial configuration capacity is obtained; finally, the capacity configuration is verified through a comprehensive case analysis for the actual operation data. The results show that the capacity configuration obtained through the data analysis features an optimized economic efficiency and photovoltaic utilization. The proposed method can provide a theoretical and practical basis for newly planned or improved large-scale charging stations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 NetherlandsPublisher:MDPI AG Picuno, Caterina; Van Eygen, Emile; Brouwer, Marieke; Kuchta, Kerstin; Thoden van Velzen, Eggo Ulphard;doi: 10.3390/su13126772
handle: 11420/9751
Setting up strategies for a sound management of plastic packaging waste (PPW) is becoming increasingly crucial at many levels of the value chain in Europe. After the very first implementation of an extended producer responsibility scheme in Germany in 1991, many EU Countries followed. This resulted in a complex network of schemes that differ from one member state to another. This paper brings together the three latest studies describing the current flows of PPW across the waste value chain from Austria (reference year 2013), Germany and the Netherlands (reference year 2017). With this aim, the models of the three single studies have been adapted to fit into a common model, allowing to perform a comparative analysis. Although with a relatively comparable product market, the three countries have different management systems (e.g., separate collection systems, target sorting products and treatment of residual waste), reflecting different national strategies to achieve the circular economy targets. Recycling rates (in terms of washed milled goods at the output of the recycling process) for the three countries resulted in 23%, 43% and 30% of the total mass of PPW generated in, respectively, Austria, Germany and the Netherlands. The fraction of mixed recycled plastics, relevant for Germany and the Netherlands only, was determined to be one of the major determinants of the differences in recycling rates. Furthermore, the discussion revolves around new political targets that have the potential to contribute to addressing the issue of tradeoff between quantity and quality of recycled plastics placed on the market, with measures such as design-for-recycling and eco-modulation of EPR fees playing a critical role, while also pointing out the aspects that inevitably hinder closed-loop recycling.
Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:MDPI AG Authors: Arif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; +2 AuthorsArif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; Bhaskar C. S. Chittoori; Abdullah Almajed;doi: 10.3390/su12177019
This study evaluated the efficacy of enzyme induced calcite precipitation (EICP) in restricting the mobility of heavy metals in soils. EICP is an environmentally friendly method that has wide ranging applications in the sustainable development of civil infrastructure. The study examined the desorption of three heavy metals from treated and untreated soils using ethylene diamine tetra-acetic acid (EDTA) and citric acid (C6H8O7) extractants under harsh conditions. Two natural soils spiked with cadmium (Cd), nickel (Ni), and lead (Pb) were studied in this research. The soils were treated with three types of enzyme solutions (ESs) to achieve EICP. A combination of urea of one molarity (M), 0.67 M calcium chloride, and urease enzyme (3 g/L) was mixed in deionized (DI) water to prepare enzyme solution 1 (ES1); non-fat milk powder (4 g/L) was added to ES1 to prepare enzyme solution 2 (ES2); and 0.37 M urea, 0.25 M calcium chloride, 0.85 g/L urease enzyme, and 4 g/L non-fat milk powder were mixed in DI water to prepare enzyme solution 3 (ES3). Ni, Cd, and Pb were added with load ratios of 50 and 100 mg/kg to both untreated and treated soils to study the effect of EICP on desorption rates of the heavy metals from soil. Desorption studies were performed after a curing period of 40 days. The curing period started after the soil samples were spiked with heavy metals. Soils treated with ESs were spiked with heavy metals after a curing period of 21 days and then further cured for 40 days. The amount of CaCO3 precipitated in the soil by the ESs was quantified using a gravimetric acid digestion test, which related the desorption of heavy metals to the amount of precipitated CaCO3. The order of desorption was as follows: Cd > Ni > Pb. It was observed that the average maximum removal efficiency of the untreated soil samples (irrespective of the load ratio and contaminants) was approximately 48% when extracted by EDTA and 46% when extracted by citric acid. The soil samples treated with ES2 exhibited average maximum removal efficiencies of 19% and 10% when extracted by EDTA and citric acid, respectively. It was observed that ES2 precipitated a maximum amount of calcium carbonate (CaCO3) when compared to ES1 and ES3 and retained the maximum amount of heavy metals in the soil by forming a CaCO3 shield on the heavy metals, thus decreasing their mobility. An approximate improvement of 30% in the retention of heavy metal ions was observed in soils treated with ESs when compared to untreated soil samples. Therefore, the study suggests that ESs can be an effective alternative in the remediation of soils contaminated with heavy metal ions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Nivedita Sana; Dali Naidu Arnepalli; Chandraraj Krishnan;doi: 10.3390/su15010505
The conversion of methane into liquid biofuels using methane-consuming bacteria, known as methanotrophs, contributes to sustainable development, as it mitigates the problem of climate change caused by greenhouse gases and aids in producing cleaner and renewable energy. In the present research, an efficient methanotroph, Methylosarcina sp. LC-4, was studied as a prospective organism for biodiesel production using methane. The methane uptake rate by the organism was enhanced 1.6 times and 2.35 times by supplementing LC-4 with micronutrients, such as copper and tungstate, respectively. This unique ability of the isolated organism enables the deployment of methanotrophs-based processes in various industrial applications. A Plackett–Burman statistical (PBD) design was used to quantify the role of the micronutrients and other media components present in the nitrate minimal salt media (NMS) in biomass and fatty acid methyl esters (FAME) yields. Nitrate, phosphate, and tungstate had a positive effect, whereas copper, magnesium, and salinity had a negative effect. The modified NMS media, formulated according to the results from the PBD analysis, increased the FAME yield (mg/L) by 85.7%, with the FAME content of 13 ± 1% (w/w) among the highest reported in methanotrophs. The obtained FAME consisted majorly (~90%) of C14–C18 saturated and monounsaturated fatty acids, making it suitable for use as biodiesel.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu