- home
- Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- DE
- IN
- English
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- DE
- IN
- English
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Everall, Jordan; Ueckerdt, Falko;Material compiled for analysis in this paper: Ueckerdt F, Bauer C, Dirnaichner A, Everall J, Sacchi R, Luderer R (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change. The material includes: 1) a spreadsheet file with technoeconomic data 2) an R Markdown script which is the source code for an interactive dashboard used to visualise (1) 3) a README file to assist with navigation of the data in (1) 1) The spreadsheet data contains CAPEX, efficiency and other supplementary data for small to large scale electrolysers for current, and future years. Data was collected based on a Literature Review of a variety of academic and industry sources conducted during the course of the title paper development. The data are differentiated by several categories including electrolysis method, source publication year and literature type. Care was taken to avoid recycled cost values, and to focus on the currency of the data, with values included to indicate the oldest reference year of any cited literature. 2) The R Markdown script in combination with the spreadsheet data is used as a basis for an interactive dashboard which can be run with an R installation and the supporting packages, or viewed online at https://h2.pik-potsdam.de/H2Dash/
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 968visibility views 968 download downloads 458 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Alanazi, Anwar Q.; Almalki, Masaud H.; Mishra, Aditya; Kubicki, Dominik J.; Wang, Zaiwei; Merten, Lena; Eickemeyer, Felix T.; Zhang, Hong; Ren, Dan; Alyamani, Ahmed Y.; Albrithen, Hamad; Albadri, Abdulrahman; Alotaibi, Mohammad Hayal; Hinderhofer, Alexander; Zakeeruddin, Shaik M.; Schreiber, Frank; Hagfeldt, Anders; Emsley, Lyndon; Milić, Jovana V.; Graetzel, Michael;Structural, optoelectronic, photovoltaic, and supplementary characterization data for “Benzylammonium-Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics”, DOI:10.1002/adfm.202101163. Figure_2_XRD.zip: Data described in Figure 2 (XRD patterns) as Origin (.opj) software file. Figure_3_NMR_data.zip: Data described in Figure 3 (NMR spectra) in the file structure of the TopSpin software, which is available from Bruker. Figure_4_spectra.zip: Data described in Figure 4 (UV-vis absorption, PL and IPCE spectra) as Origin (.opj) software files. Figure_5_PV.zip: Data described in Figure 5 (photovoltaic characterization) as Origin (.opj) software files. Figure_6_spectra.zip: Data described in Figure 6 (PLQY and TRPL) as Origin (.opj) and *.csv files. Figure_7_stability.zip: Data described in Figure 7 (stability analysis) as Origin (.opj) software files. Figure_SI.zip: Data described in the Supporting Information Figures S1, S2, S3, S5, and S6 (XRD data, reciprocal space maps, radial profiles of q-maps, UV-vis absorption spectra, PL spectra, and additional photovoltaic characterization) as Origin (.opj), text (.txt), and image (.tiff) files.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 113visibility views 113 download downloads 35 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Publisher:Zenodo Kunz, Friedrich; Weibezahn, Jens; Hauser, Philip; Heidari, Sina; Schill, Wolf-Peter; Felten, Björn; Kendziorski, Mario; Zech, Matthias; Zepter, Jan; von Hirschhausen, Christian; Möst, Dominik; Weber, Christoph;This reference data set representing the status quo of the German electricity, heat, and natural gas sectors was compiled within the research project ‘LKD-EU’ (Long-term planning and short-term optimization of the German electricity system within the European framework: Further development of methods and models to analyze the electricity system including the heat and gas sector). While the focus is on the electricity sector, the heat and natural gas sectors are covered as well. With this reference data set, we aim to increase the transparency of energy infrastructure data in Germany. Where not otherwise stated, the data included in this report is given with reference to the year 2015 for Germany. The data set is documented in DIW Data Documentation 92 (see references). The project is a joined effort by the German Institute for Economic Research (DIW Berlin), the Workgroup for Infrastructure Policy (WIP) at Technische Universität Berlin (TUB), the Chair of Energy Economics (EE2) at Technische Universität Dresden (TUD), and the House of Energy Markets & Finance at University of Duisburg-Essen. The project was funded by the German Federal Ministry for Economic Affairs and Energy through the grant ‘LKD-EU’, FKZ 03ET4028A-D. {"references": ["Kunz, Friedrich et. al. (2017). Electricity, Heat and Gas Sector Data for Modeling the German System. DIW Data Documentation 92."]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1044462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,100 download downloads 867 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1044462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Embargo end date: 31 Jan 2020Publisher:GFZ Data Services Authors: Zieger, Toni; Lerbs, Nikolaus; Ritter, Joachim R.R.; Korn, Michael;SMARTIE1 is a joint seismological experiment of the Karlsruhe Institute of Technology (KIT) and the Leipzig University. We installed in total 36 seismic stations as ring-like and profile-like measurements near to a single wind turbine (WT) at the Fraunhofer Institute for Chemical Technology (ICT) in Pfinztal, SW Germany, for 21 days. The main goals of this project are a better understanding of a single WT as a seismic source and the development of propagation models for the WT-induced seismic signals, depending on the geological properties. Waveform data are available from the GEOFON data centre, under network code X8 (under CC-BY 4.0 license according to GIPP-rules).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14470/k37563128245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14470/k37563128245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg (Germany) Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;doi: 10.4228/zalf.dk.107
We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | ENSYSTRAEC| ENSYSTRAAuthors: Md Nasimul Islam Maruf;OSeEM-SN is a tool constructed using Oemof Tabular to apply cross-sectoral approaches for analyzing 100% renewable and sector-coupled sub-national energy systems. The model is validated using the case study of Schleswig-Holstein, Germany. To run the scripts, you need to install Oemof Tabular using the following command- pip install oemof.tabular For details on Oemof Tabular please go through the documentation- https://oemof-tabular.readthedocs.io/ The model uses Oemof-Solph, a model generator for energy system modelling and optimisation. The oemof.solph package is part of the Open energy modelling framework (Oemof). This an organisational framework to bundle tools for energy system modelling. Details on Oemof-Solph is described here- https://github.com/oemof/oemof-solph The article based on the OSeEM-SN based analysis of Schleswig-Holstein is available at- https://www.mdpi.com/2071-1050/13/7/3852 The complete model, including all datasets, scripts, and results are available at: Details are also available at: https://github.com/znes/OSeEM-SN If you have any questions about the model, please contact- mnimaruf@gmail.com
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5727039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5727039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Everall, Jordan; Ueckerdt, Falko;Material compiled for analysis in this paper: Ueckerdt F, Bauer C, Dirnaichner A, Everall J, Sacchi R, Luderer R (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change. The material includes: 1) a spreadsheet file with technoeconomic data 2) an R Markdown script which is the source code for an interactive dashboard used to visualise (1) 3) a README file to assist with navigation of the data in (1) 1) The spreadsheet data contains CAPEX, efficiency and other supplementary data for small to large scale electrolysers for current, and future years. Data was collected based on a Literature Review of a variety of academic and industry sources conducted during the course of the title paper development. The data are differentiated by several categories including electrolysis method, source publication year and literature type. Care was taken to avoid recycled cost values, and to focus on the currency of the data, with values included to indicate the oldest reference year of any cited literature. 2) The R Markdown script in combination with the spreadsheet data is used as a basis for an interactive dashboard which can be run with an R installation and the supporting packages, or viewed online at https://h2.pik-potsdam.de/H2Dash/
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 968visibility views 968 download downloads 458 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Alanazi, Anwar Q.; Almalki, Masaud H.; Mishra, Aditya; Kubicki, Dominik J.; Wang, Zaiwei; Merten, Lena; Eickemeyer, Felix T.; Zhang, Hong; Ren, Dan; Alyamani, Ahmed Y.; Albrithen, Hamad; Albadri, Abdulrahman; Alotaibi, Mohammad Hayal; Hinderhofer, Alexander; Zakeeruddin, Shaik M.; Schreiber, Frank; Hagfeldt, Anders; Emsley, Lyndon; Milić, Jovana V.; Graetzel, Michael;Structural, optoelectronic, photovoltaic, and supplementary characterization data for “Benzylammonium-Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics”, DOI:10.1002/adfm.202101163. Figure_2_XRD.zip: Data described in Figure 2 (XRD patterns) as Origin (.opj) software file. Figure_3_NMR_data.zip: Data described in Figure 3 (NMR spectra) in the file structure of the TopSpin software, which is available from Bruker. Figure_4_spectra.zip: Data described in Figure 4 (UV-vis absorption, PL and IPCE spectra) as Origin (.opj) software files. Figure_5_PV.zip: Data described in Figure 5 (photovoltaic characterization) as Origin (.opj) software files. Figure_6_spectra.zip: Data described in Figure 6 (PLQY and TRPL) as Origin (.opj) and *.csv files. Figure_7_stability.zip: Data described in Figure 7 (stability analysis) as Origin (.opj) software files. Figure_SI.zip: Data described in the Supporting Information Figures S1, S2, S3, S5, and S6 (XRD data, reciprocal space maps, radial profiles of q-maps, UV-vis absorption spectra, PL spectra, and additional photovoltaic characterization) as Origin (.opj), text (.txt), and image (.tiff) files.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 113visibility views 113 download downloads 35 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Publisher:Zenodo Kunz, Friedrich; Weibezahn, Jens; Hauser, Philip; Heidari, Sina; Schill, Wolf-Peter; Felten, Björn; Kendziorski, Mario; Zech, Matthias; Zepter, Jan; von Hirschhausen, Christian; Möst, Dominik; Weber, Christoph;This reference data set representing the status quo of the German electricity, heat, and natural gas sectors was compiled within the research project ‘LKD-EU’ (Long-term planning and short-term optimization of the German electricity system within the European framework: Further development of methods and models to analyze the electricity system including the heat and gas sector). While the focus is on the electricity sector, the heat and natural gas sectors are covered as well. With this reference data set, we aim to increase the transparency of energy infrastructure data in Germany. Where not otherwise stated, the data included in this report is given with reference to the year 2015 for Germany. The data set is documented in DIW Data Documentation 92 (see references). The project is a joined effort by the German Institute for Economic Research (DIW Berlin), the Workgroup for Infrastructure Policy (WIP) at Technische Universität Berlin (TUB), the Chair of Energy Economics (EE2) at Technische Universität Dresden (TUD), and the House of Energy Markets & Finance at University of Duisburg-Essen. The project was funded by the German Federal Ministry for Economic Affairs and Energy through the grant ‘LKD-EU’, FKZ 03ET4028A-D. {"references": ["Kunz, Friedrich et. al. (2017). Electricity, Heat and Gas Sector Data for Modeling the German System. DIW Data Documentation 92."]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1044462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,100 download downloads 867 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1044462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Embargo end date: 31 Jan 2020Publisher:GFZ Data Services Authors: Zieger, Toni; Lerbs, Nikolaus; Ritter, Joachim R.R.; Korn, Michael;SMARTIE1 is a joint seismological experiment of the Karlsruhe Institute of Technology (KIT) and the Leipzig University. We installed in total 36 seismic stations as ring-like and profile-like measurements near to a single wind turbine (WT) at the Fraunhofer Institute for Chemical Technology (ICT) in Pfinztal, SW Germany, for 21 days. The main goals of this project are a better understanding of a single WT as a seismic source and the development of propagation models for the WT-induced seismic signals, depending on the geological properties. Waveform data are available from the GEOFON data centre, under network code X8 (under CC-BY 4.0 license according to GIPP-rules).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14470/k37563128245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14470/k37563128245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg (Germany) Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;doi: 10.4228/zalf.dk.107
We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | ENSYSTRAEC| ENSYSTRAAuthors: Md Nasimul Islam Maruf;OSeEM-SN is a tool constructed using Oemof Tabular to apply cross-sectoral approaches for analyzing 100% renewable and sector-coupled sub-national energy systems. The model is validated using the case study of Schleswig-Holstein, Germany. To run the scripts, you need to install Oemof Tabular using the following command- pip install oemof.tabular For details on Oemof Tabular please go through the documentation- https://oemof-tabular.readthedocs.io/ The model uses Oemof-Solph, a model generator for energy system modelling and optimisation. The oemof.solph package is part of the Open energy modelling framework (Oemof). This an organisational framework to bundle tools for energy system modelling. Details on Oemof-Solph is described here- https://github.com/oemof/oemof-solph The article based on the OSeEM-SN based analysis of Schleswig-Holstein is available at- https://www.mdpi.com/2071-1050/13/7/3852 The complete model, including all datasets, scripts, and results are available at: Details are also available at: https://github.com/znes/OSeEM-SN If you have any questions about the model, please contact- mnimaruf@gmail.com
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5727039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5727039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu