- home
- Search
- Energy Research
- 2025-2025
- 7. Clean energy
- BE
- SA
- IN
- Energy Research
- 2025-2025
- 7. Clean energy
- BE
- SA
- IN
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Yanbu Industrial College Authors: G.M. Zaki; Majed M. Alhazmy; Rahim K. Jassim;doi: 10.53370/001c.23736
Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of insufficient cooling. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. An energy analysis of a GT Brayton cycle coupled to a refrigeration cycle shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed and applied to an open cycle, Hitachi MS700 GT plant at the industrial city of Yanbu by the Red Sea in the Kingdom of Saudi Arabia. Result shows that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46%, at a decrease in thermal efficiency of 12.25%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.
Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.23736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.23736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Yanbu Industrial College Authors: Syed Yousufuddin; Naseeb Khan; Muhammad Saleem;doi: 10.53370/001c.36132
With the advent of employing bio-fuels along with the diesel in compression ignition engines the study of performance and emission characteristics have occupied the prominence, owing to diversified multi responses. As the limited information is available about the application of Taguchi based GTMA process to maximize the overall performance and emission characteristics of diesel engine, in the present work the investigation was carried out to maximize the overall utility by employing the Taguchi based GTMA process. By following the user preference rating, weights for the response characteristics namely brake thermal efficiency, brake specific fuel consumption, carbon monoxide and oxides of nitrogen were calculated using graph theory and matrix approach (GTMA). The parameter hydrogen induction played a major role to an extent of 78.62% while Injection opening pressure playing a minor role with a contribution of 7.06%. The optimal parameters condition was at mid-level of the governing parameters namely IOP, CR and volume of hydrogen inducted. The predicted results were within 95% of confidence interval of the optimal values. Therefore, the hydrogen inductance into the cylinder not only improving the performance but also minimizing the emission characteristics.
Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Christoph Bergmeir; Frits de Nijs; Evgenii Genov; Abishek Sriramulu; Mahdi Abolghasemi; Richard Bean; John Betts; Quang Bui; Nam Trong Dinh; Nils Einecke; Rasul Esmaeilbeigi; Scott Ferraro; Priya Galketiya; Robert Glasgow; Rakshitha Godahewa; Yanfei Kang; Steffen Limmer; Luis Magdalena; Pablo Montero-Manso; Daniel Peralta; Yogesh Pipada Sunil Kumar; Alejandro Rosales-Pérez; Julian Ruddick; Akylas Stratigakos; Peter Stuckey; Guido Tack; Isaac Triguero; Rui Yuan;Predict+Optimize frameworks integrate forecasting and optimization to address real-world challenges such as renewable energy scheduling, where variability and uncertainty are critical factors. This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling, focusing on forecasting renewable production and demand and optimizing energy cost. The competition attracted 49 participants in total. The top-ranked method employed stochastic optimization using LightGBM ensembles, and achieved at least a 2% reduction in energy costs compared to deterministic approaches, demonstrating that the most accurate point forecast does not necessarily guarantee the best performance in downstream optimization. The published data and problem setting establish a benchmark for further research into integrated forecasting-optimization methods for energy systems, highlighting the importance of considering forecast uncertainty in optimization models to achieve cost-effective and reliable energy management. The novelty of this work lies in its comprehensive evaluation of Predict+Optimize methodologies applied to a real-world renewable energy scheduling problem, providing insights into the scalability, generalizability, and effectiveness of the proposed solutions. Potential applications extend beyond energy systems to any domain requiring integrated forecasting and optimization, such as supply chain management, transportation planning, and financial portfolio optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Research 2025Embargo end date: 01 Jan 2023 Netherlands, BelgiumPublisher:Elsevier BV Authors: Julian Ruddick; Luis Ramirez Camargo; Muhammad Andy Putratama; Maarten Messagie; +1 AuthorsJulian Ruddick; Luis Ramirez Camargo; Muhammad Andy Putratama; Maarten Messagie; Thierry Coosemans;Energy management systems (EMS) have traditionally been implemented using rule-based control (RBC) and model predictive control (MPC) methods. However, recent research has explored the use of reinforcement learning (RL) as a promising alternative. This paper introduces TreeC, a machine learning method that utilizes the covariance matrix adaptation evolution strategy metaheuristic algorithm to generate an interpretable EMS modeled as a decision tree. Unlike RBC and MPC approaches, TreeC learns the decision strategy of the EMS based on historical data, adapting the control model to the controlled energy grid. The decision strategy is represented as a decision tree, providing interpretability compared to RL methods that often rely on black-box models like neural networks. TreeC is evaluated against MPC with perfect forecast and RL EMSs in two case studies taken from literature: an electric grid case and a household heating case. In the electric grid case, TreeC achieves an average energy loss and constraint violation score of 19.2, which is close to MPC and RL EMSs that achieve scores of 14.4 and 16.2 respectively. All three methods control the electric grid well especially when compared to the random EMS, which obtains an average score of 12 875. In the household heating case, TreeC performs similarly to MPC on the adjusted and averaged electricity cost and total discomfort (0.033 EUR/m$^2$ and 0.42 Kh for TreeC compared to 0.037 EUR/m$^2$ and 2.91 kH for MPC), while outperforming RL (0.266 EUR/m$^2$ and 24.41 Kh). Accepted version Knowledge based system
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.knosys.2024.112756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.knosys.2024.112756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Bentham Science Publishers Ltd. Authors: R. Kavin; J. Jayakumar;: Power generation in today’s world is of utmost importance, due to which blockchain is used for the categorization and formation of decentralized structures. This paper has proposed decentralized energy generation using a nester, i.e., energy sharing without third-party intervention. Decentralized blockchain technology is applied to ensure power sharing between buyer and seller, and also to achieve efficient power transmission between prosumer and consumer. Energy management is associated with controlling and reducing energy consumption. Blockchain technology plays a major role in distributed power generation, for example, power-sharing (solar and wind energy), price fixation, energy transaction monitoring, and peer-to-peer power-sharing. These are operations performed by blockchain in renewable power generation. Solar power generation using blockchain technology can obtain an impact resting upon the power generation system. Distributed ledger is the key area of blockchain technology for recording and tracking each transaction in the distribution system to improve the efficiency of the overall transmission system. A smart contract is another important tool in the blockchain technology, which is issued to confirm an assent between buyer and seller before starting any energy transaction without external intervention and also to avoid time delay. Maximum power point tracking is conducted in PV cells using blockchain technology. Blockchain influences energy management systems to improve the utilization of energy, optimize energy usage, and also to reduce the cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0118722121259044230920075604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0118722121259044230920075604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Conference object 2025 Germany, BelgiumPublisher:Elsevier BV Funded by:EC | PERCISTANDEC| PERCISTANDAlessandro Martulli; Fabrizio Gota; Neethi Rajagopalan; Toby Meyer; Cesar Omar Ramirez Quiroz; Daniele Costa; Ulrich W. Paetzold; Robert Malina; Bart Vermang; Sebastien Lizin;handle: 1942/45196 , 1942/41965
In the last decade, the manufacturing capacity of silicon, the dominant PV technology, has increasingly been concentrated in China. This has led to PV cost reduction of approximately 80%, while, at the same time, posing risks to PV supply chain security. Recent advancements of novel perovskite tandem PV technologies as an alternative to traditional silicon-based PV provide opportunities for diversification of the PV manufacturing capacity and for increasing the GHG emission benefit of solar PV. Against this background, we estimate the current and future cost-competitiveness and GHG emissions of a set of already commercialized as well as emerging PV technologies for different production locations (China, USA, EU), both at residential and utility-scale. We find EU and USA-manufactured thin-film tandems to have 2 to 4% and 0.5 to 2% higher costs per kWh and 37 to 40%and 32 to 35% less GHG emissions per kWh at residential and utility-scale, respectively. Our projections indicate that they will also retain competitive costs (up to 2% higher)and a 20% GHG emissions advantage per kWh in 2050.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Yanbu Industrial College Authors: G.M. Zaki; Majed M. Alhazmy; Rahim K. Jassim;doi: 10.53370/001c.23736
Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of insufficient cooling. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. An energy analysis of a GT Brayton cycle coupled to a refrigeration cycle shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed and applied to an open cycle, Hitachi MS700 GT plant at the industrial city of Yanbu by the Red Sea in the Kingdom of Saudi Arabia. Result shows that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46%, at a decrease in thermal efficiency of 12.25%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.
Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.23736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.23736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Yanbu Industrial College Authors: Syed Yousufuddin; Naseeb Khan; Muhammad Saleem;doi: 10.53370/001c.36132
With the advent of employing bio-fuels along with the diesel in compression ignition engines the study of performance and emission characteristics have occupied the prominence, owing to diversified multi responses. As the limited information is available about the application of Taguchi based GTMA process to maximize the overall performance and emission characteristics of diesel engine, in the present work the investigation was carried out to maximize the overall utility by employing the Taguchi based GTMA process. By following the user preference rating, weights for the response characteristics namely brake thermal efficiency, brake specific fuel consumption, carbon monoxide and oxides of nitrogen were calculated using graph theory and matrix approach (GTMA). The parameter hydrogen induction played a major role to an extent of 78.62% while Injection opening pressure playing a minor role with a contribution of 7.06%. The optimal parameters condition was at mid-level of the governing parameters namely IOP, CR and volume of hydrogen inducted. The predicted results were within 95% of confidence interval of the optimal values. Therefore, the hydrogen inductance into the cylinder not only improving the performance but also minimizing the emission characteristics.
Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Christoph Bergmeir; Frits de Nijs; Evgenii Genov; Abishek Sriramulu; Mahdi Abolghasemi; Richard Bean; John Betts; Quang Bui; Nam Trong Dinh; Nils Einecke; Rasul Esmaeilbeigi; Scott Ferraro; Priya Galketiya; Robert Glasgow; Rakshitha Godahewa; Yanfei Kang; Steffen Limmer; Luis Magdalena; Pablo Montero-Manso; Daniel Peralta; Yogesh Pipada Sunil Kumar; Alejandro Rosales-Pérez; Julian Ruddick; Akylas Stratigakos; Peter Stuckey; Guido Tack; Isaac Triguero; Rui Yuan;Predict+Optimize frameworks integrate forecasting and optimization to address real-world challenges such as renewable energy scheduling, where variability and uncertainty are critical factors. This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling, focusing on forecasting renewable production and demand and optimizing energy cost. The competition attracted 49 participants in total. The top-ranked method employed stochastic optimization using LightGBM ensembles, and achieved at least a 2% reduction in energy costs compared to deterministic approaches, demonstrating that the most accurate point forecast does not necessarily guarantee the best performance in downstream optimization. The published data and problem setting establish a benchmark for further research into integrated forecasting-optimization methods for energy systems, highlighting the importance of considering forecast uncertainty in optimization models to achieve cost-effective and reliable energy management. The novelty of this work lies in its comprehensive evaluation of Predict+Optimize methodologies applied to a real-world renewable energy scheduling problem, providing insights into the scalability, generalizability, and effectiveness of the proposed solutions. Potential applications extend beyond energy systems to any domain requiring integrated forecasting and optimization, such as supply chain management, transportation planning, and financial portfolio optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Research 2025Embargo end date: 01 Jan 2023 Netherlands, BelgiumPublisher:Elsevier BV Authors: Julian Ruddick; Luis Ramirez Camargo; Muhammad Andy Putratama; Maarten Messagie; +1 AuthorsJulian Ruddick; Luis Ramirez Camargo; Muhammad Andy Putratama; Maarten Messagie; Thierry Coosemans;Energy management systems (EMS) have traditionally been implemented using rule-based control (RBC) and model predictive control (MPC) methods. However, recent research has explored the use of reinforcement learning (RL) as a promising alternative. This paper introduces TreeC, a machine learning method that utilizes the covariance matrix adaptation evolution strategy metaheuristic algorithm to generate an interpretable EMS modeled as a decision tree. Unlike RBC and MPC approaches, TreeC learns the decision strategy of the EMS based on historical data, adapting the control model to the controlled energy grid. The decision strategy is represented as a decision tree, providing interpretability compared to RL methods that often rely on black-box models like neural networks. TreeC is evaluated against MPC with perfect forecast and RL EMSs in two case studies taken from literature: an electric grid case and a household heating case. In the electric grid case, TreeC achieves an average energy loss and constraint violation score of 19.2, which is close to MPC and RL EMSs that achieve scores of 14.4 and 16.2 respectively. All three methods control the electric grid well especially when compared to the random EMS, which obtains an average score of 12 875. In the household heating case, TreeC performs similarly to MPC on the adjusted and averaged electricity cost and total discomfort (0.033 EUR/m$^2$ and 0.42 Kh for TreeC compared to 0.037 EUR/m$^2$ and 2.91 kH for MPC), while outperforming RL (0.266 EUR/m$^2$ and 24.41 Kh). Accepted version Knowledge based system
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.knosys.2024.112756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.knosys.2024.112756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Bentham Science Publishers Ltd. Authors: R. Kavin; J. Jayakumar;: Power generation in today’s world is of utmost importance, due to which blockchain is used for the categorization and formation of decentralized structures. This paper has proposed decentralized energy generation using a nester, i.e., energy sharing without third-party intervention. Decentralized blockchain technology is applied to ensure power sharing between buyer and seller, and also to achieve efficient power transmission between prosumer and consumer. Energy management is associated with controlling and reducing energy consumption. Blockchain technology plays a major role in distributed power generation, for example, power-sharing (solar and wind energy), price fixation, energy transaction monitoring, and peer-to-peer power-sharing. These are operations performed by blockchain in renewable power generation. Solar power generation using blockchain technology can obtain an impact resting upon the power generation system. Distributed ledger is the key area of blockchain technology for recording and tracking each transaction in the distribution system to improve the efficiency of the overall transmission system. A smart contract is another important tool in the blockchain technology, which is issued to confirm an assent between buyer and seller before starting any energy transaction without external intervention and also to avoid time delay. Maximum power point tracking is conducted in PV cells using blockchain technology. Blockchain influences energy management systems to improve the utilization of energy, optimize energy usage, and also to reduce the cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0118722121259044230920075604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0118722121259044230920075604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Conference object 2025 Germany, BelgiumPublisher:Elsevier BV Funded by:EC | PERCISTANDEC| PERCISTANDAlessandro Martulli; Fabrizio Gota; Neethi Rajagopalan; Toby Meyer; Cesar Omar Ramirez Quiroz; Daniele Costa; Ulrich W. Paetzold; Robert Malina; Bart Vermang; Sebastien Lizin;handle: 1942/45196 , 1942/41965
In the last decade, the manufacturing capacity of silicon, the dominant PV technology, has increasingly been concentrated in China. This has led to PV cost reduction of approximately 80%, while, at the same time, posing risks to PV supply chain security. Recent advancements of novel perovskite tandem PV technologies as an alternative to traditional silicon-based PV provide opportunities for diversification of the PV manufacturing capacity and for increasing the GHG emission benefit of solar PV. Against this background, we estimate the current and future cost-competitiveness and GHG emissions of a set of already commercialized as well as emerging PV technologies for different production locations (China, USA, EU), both at residential and utility-scale. We find EU and USA-manufactured thin-film tandems to have 2 to 4% and 0.5 to 2% higher costs per kWh and 37 to 40%and 32 to 35% less GHG emissions per kWh at residential and utility-scale, respectively. Our projections indicate that they will also retain competitive costs (up to 2% higher)and a 20% GHG emissions advantage per kWh in 2050.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu