search
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
54,795 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • engineering and technology
  • IN

  • Authors: P.B.L. Chaurasia; Harpal Singh; A.K. Singh; Amit Singh;

    The Western Rajasthan commonly known as the ‘Indian Thar Desert’ is characterised by harsh climatic conditions with active dunal activities. Precipitation (150–420 mm/yr) is far lower than evapotranspiration potentials (1500–2000 mm/yr). Ground water is limited and often brakish and high (75–100 m) water table. Solar intensity in the region varies from 5.85 to 6.44 kWh/m2/day. Further, peculiarity of the region is that sun is available for 345–355 days in a year, the area being highly scarce in rainfall. On an average, rains occur only for 10.4–20.5 days in a year in the Thar Desert. Therefore, there is high scope to harness solar energy for useful purposes. Considering these solar energy technologies for entrepreneurs, the detailed cost analysis has been worked out and presented. With initial investment of Rs (Indian Rupees) 3.50 lakhs for solar drying projects for handling 60,000 kg fresh vegetables annually (300 working days/yr), the payback period and average net annual returns come to 2.17 years and ...

    addClaim
    8
    citations8
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sumana Choudhuri; Jayanta Mukhopadhyay; Samarjit Sengupta;

    Abstract SRM (Switched Reluctance motor) is gaining much interest in industries due to its straightforward structure, low-cost manufacturability and dependability which makes it better than other electric machines. SRM drive is the most appropriate for variable speed tasks. Additionally, the performance of the current and speed control for the SRM driver framework could be negatively influenced by noise, disturbances, and inactivity of load torque. To solve this difficulty, this paper develop an ANFIS based Speed and Current control with Torque Ripple Minimization using Hybrid SSD-SFO for SRM. The main goal of this work is to obtain preferred current and speed performance of SRM with minimum torque ripple. For concurrent regulator of the speed and current, an ANFIS (Adaptive Neuro-Fuzzy Inference System) structure is employed which includes two controlling loops. The inside loop is regulated for control of current and the outside loop is regulated for control of speed even with perfect choice of switching angles. The dynamic conduct of SRM is studied to restrict the current and speed that reduces the ripple of torque. Hybrid SSD-SFO (social ski-diver based sunflower optimization) procedure is employed to achieve the parameter values of current and speed control of SRM. The proposed scheme is accomplished by MATLAB/ Simulink environment. The results show that the hybrid SSD-SFO scheme given the better performance compared to the SSD and SFO algorithm.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Energy T...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy Technologies and Assessments
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Energy T...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy Technologies and Assessments
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: S.C. Chetal;

    AbstractTwenty sodium-cooled fast reactors (SFRs) have provided valuable experience in design, licensing, and operation. This paper summarizes the important safety criteria and safety guidelines of intermediate sodium systems, steam generators, decay heat removal systems and associated construction materials and in-service inspection. The safety criteria and guidelines provide a sufficient framework for design and licensing, in particular by new entrants in SFRs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nuclear Engineering and Technology
    Article . 2015 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nuclear Engineering and Technology
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nuclear Engineering and Technology
      Article . 2015 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nuclear Engineering and Technology
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jianbin Wu; orcid Sami Ahmed Haider;
    Sami Ahmed Haider
    ORCID
    Harvested from ORCID Public Data File

    Sami Ahmed Haider in OpenAIRE
    Mukesh Soni; Ashima Kalra; +1 Authors

    Mobile edge computational power faces the difficulty of balancing the energy consumption of many devices and workloads as science and technology advance. Most related research focuses on exploiting edge server computing performance to reduce mobile device energy consumption and task execution time during task processing. Existing research, however, shows that there is no adequate answer to the energy consumption balances between multi-device and multitasking. The present edge computing system model has been updated to address this energy consumption balance problem. We present a blockchain-based analytical method for the energy utilization balance optimization problem of multi-mobile devices and multitasking and an optimistic scenario on this foundation. An investigation of the corresponding approximation ratio is performed. Compared to the total energy demand optimization method and the random algorithm, many simulation studies have been carried out. Compared to the random process, the testing findings demonstrate that the suggested greedy algorithm can improve average performance by 66.59 percent in terms of energy balance. Furthermore, when the minimum transmission power of the mobile device is between five and six dBm, the greedy algorithm nearly achieves the best solution when compared to the brute force technique under the classical task topology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJ Computer Scien...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ Computer Science
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ Computer Science
    Article . 2022
    Data sources: DOAJ
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJ Computer Scien...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ Computer Science
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ Computer Science
      Article . 2022
      Data sources: DOAJ
      addClaim
  • Authors: orcid Prabhakar Karthikeyan;
    Prabhakar Karthikeyan
    ORCID
    Harvested from ORCID Public Data File

    Prabhakar Karthikeyan in OpenAIRE
    Ramesh; orcid Srihari Mandava;
    Srihari Mandava
    ORCID
    Harvested from ORCID Public Data File

    Srihari Mandava in OpenAIRE

    The radial network is the one which passes through the network without any connection to other supply. It is used for isolated loads like rural areas. Different forward-backward sweep algorithms exist for the load flow analysis of radial distribution systems. A new method of load flow analysis for radial distribution system is explained in this paper. This method is worked out by considering voltage independent loads and voltage dependency loads. The voltage profile results of the proposed method are compared with ratio flow method. Adequate simulations are performed by using Matlab.

    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid J. Shanthi Sravan;
    J. Shanthi Sravan
    ORCID
    Harvested from ORCID Public Data File

    J. Shanthi Sravan in OpenAIRE
    S. Venkata Mohan; S. Venkata Mohan; Y. V. Rami Reddy; +2 Authors

    Anode with good electrocatalytic capabilities is more specifically required to reduce the ohimic losses during microbial fuel cell (MFC) operation. Highly conductive polymers viz., Polyaniline (PANi) and Polyaniline/Carbon nanotube (PANi/CNT) composite were prepared by in situ oxidative chemical polymerization method. Anodes were fabricated independently by coating PANi and CNT/PANi composites on the surface of SSM. The fabricated electrodes were evaluated as anode against stainless steel mess (SSM) as cathode during MFC operation. Maximum bioelectricity generation was observed in SSM-PANi/CNT-anode with power density of 48 mW/m2 and COD removal efficiency of 80% compared with SSM-PANi-anode (38 mW/m2; 65%) and SSM-anode (28 mW/m2; 58%). Bioelectrochemical characterization of the electrode materials using cyclic voltammetry and electrochemical impedance spectroscopy showed high electrocatalytic activity of PANi/CNT composite electrode. The study concluded the efficiency of PANi/CNT composite electrodes as bioanode in operation of MFCs towards achieving increased bioelectricity production along with wastewater treatment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Anas Al-Dailami; Imran Ahmad; orcid Hesam Kamyab;
    Hesam Kamyab
    ORCID
    Harvested from ORCID Public Data File

    Hesam Kamyab in OpenAIRE
    Norhayati Abdullah; +3 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass Conversion a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass Conversion and Biorefinery
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass Conversion a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass Conversion and Biorefinery
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • Authors: A. Jaya Laxmi; P. M. Menghal;

    In order to compete in the global market, engineering organizations are under increasing pressure to design, develop, and deploy products in the market place as quickly as possible with first time quality. In order to achieve these objectives, it is necessary to streamline the design and development process, namely, “transfer of analytical design of Intelligence to Mechatronics intelligence” in an efficient and expedient manner. An increasing pressure exists on the development cycle of control systems to serve this widening application spectrum. The time-to-market of a new product often determines its commercial success. Consequently, design problems have to be discovered as early as possible in the design process in order to take remedial actions. Efficient and accurate tools and procedures are required to support short yet successful development processes. Over the last two decades, commercially available computer has become both increasingly powerful and increasingly affordable. This, in turn, has led to the emergence of highly sophisticated simulation software applications that not only enable high-fidelity simulation of dynamic systems and related controls, but also automatic code generation for implementation in industrial controllers. Simulation tools have been widely used for the design and improvement of electrical systems since the mid twentieth century. The evolution of simulation tools has progressed in step with the evolution of computing technologies. In last ten years, computing technologies have improved dramatically in performance and become widely available at a steadily decreasing cost. Consequently, simulation tools have also seen dramatic performance gains and steady cost decreases. Researchers and engineers now have access to affordable, high-performance simulation tools that were previously too cost prohibitive, except for the largest manufacturers and utilities. The purpose of this paper is to review major milestones that set the stage for the development of the today's real time simulation including sufficient detail to acquaint reader with their basic principles, strength, challenges and its applications.

    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • Authors: Jagdeep Singh Lather; RamaKoteswara Rao Alla; G. L. Pahuja;

    Risk is the possibility that an undesirable event might occur in the future that will result in some negative consequences. Risk analysis of a system is required to protect the system from risky (more failure prone) components. Reliability Importance measures play an important role in ranking the components according to the impact on the system adequate performance. Risk based measures are useful in identifying the weak components and help in improving the reliability of the overall system efficiently. Risk and Reliability of Substation Automation System (SAS) are most important and desirable design considerations. SAS consists of different components and its applications require real time performance. Three substation automation system architectures are considered in this paper. Two important measures Improvement Potential (IP) and Risk Achievement Worth (RAW) are used to prioritize the components in two types of architectures of SAS. System reliability expressions for all architectures are computed with their reliability block diagrams. On the basis of these two IP and RAW measures the components DCP, ESW and NCCS are most important, BCU and EI are least important components from both maintenance and risk point of view.

    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Gopinath Halder;
    Gopinath Halder
    ORCID
    Harvested from ORCID Public Data File

    Gopinath Halder in OpenAIRE
    orcid Bisheswar Karmakar;
    Bisheswar Karmakar
    ORCID
    Harvested from ORCID Public Data File

    Bisheswar Karmakar in OpenAIRE

    Abstract Biodiesel has gained the forefront of our focus on renewable transportation fuels. This article provides a comprehensive review on the sources used as feedstock and their classification based on generation or type (edible, non-edible, waste resources and animal fats) along with a variety of classical and modern oil extraction techniques. The technical aspects of the various biodiesel production methods currently implemented to the best of our knowledge are discussed here, which include in-situ biodiesel production, both catalysed (homogeneous and heterogeneous systems) and uncatalysed classical production approaches, with emphasis on how each of these approaches are affected by their reaction parameters. The review also highlights the observed drawbacks of each process with a view to assessing the implementation of supercritical and superheated technologies as an alternative, economically feasible advancement. Supercritical process (SCP) has shown great prospect in the obtainment of high quality biodiesel from a wide range of high to low grade feedstock with minimal impacts on the presence of water or FFAs (free fatty acids). From available literature it is shown that these do not affect the process significantly, and various other supercritical fluids such as methyl acetate, tert-butyl methyl ether (MTBE) and dimethyl carbonate can also be used to avoid glycerol formation. The process however, suffers from high initial implementation cost being the most prominent drawback, among others like thermal degradation of the fuel. Another promising technique, the superheated vapour technology (SHV) has emerged as an alternative, with limited literature proving the superiority of either of these processes to be inconclusive. In future works, researchers need to look into various aspects such as developing a spiral reactor for heat recovery, using software based optimization for eliminating redundant experiments analysing production cost for industrial scale-up and improving the fuel’s oxidative stability by adding antioxidants for convenient long-term storage and use.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    182
    citations182
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 2
  • 3
  • 4
  • 5
  • 6
  • chevron_right
Powered by OpenAIRE graph