search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Embargo
  • IN
  • ZENODO

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arjun Srivathsa; Vivek Ramachandran; Pooja Saravanan; Abhijith Sureshbabu; +2 Authors

    ABSTRACTIntraguild interactions among carnivores have long held the fascination of ecologists. Ranging from competition to facilitation and coexistence, these interactions and their complex interplay influence everything from species persistence to ecosystem functioning. Yet, the patterns and pathways of such interactions are far from understood in tropical forest systems, particularly across countries in the Global South. Here, we examined the determinants and consequences of competitive interactions between dholes Cuon alpinus and the two large felids (leopards Panthera pardus and tigers Panthera tigris) with which they most commonly co‐occur across Asia. Using a combination of traditional and novel data sources (N = 118), we integrate information from spatial, temporal, and dietary niche dimensions. These three species have faced catastrophic declines in their extent of co‐occurrence over the past century; most of their source populations are now confined to Protected Areas. Analysis of dyadic interactions between species pairs showed a clear social hierarchy. Tigers were dominant over dholes, although pack strength in dholes helped ameliorate some of these effects; leopards were subordinate to dholes. Population‐level spatio‐temporal interactions assessed at 25 locations across Asia did not show a clear pattern of overlap or avoidance between species pairs. Diet‐profile assessments indicated that wild ungulate biomass consumption by tigers was highest, while leopards consumed more primate and livestock prey as compared to their co‐predators. In terms of prey offtake (ratio of wild prey biomass consumed to biomass available), the three species together harvested 0.4–30.2% of available prey, with the highest offtake recorded from the location where the carnivores reach very high densities. When re‐examined in the context of prey availability and offtake, locations with low wild prey availability showed spatial avoidance and temporal overlap among the carnivore pairs, and locations with high wild prey availability showed spatial overlap and temporal segregation. Based on these observations, we make predictions for 40 Protected Areas in India where temporally synchronous estimates of predator and prey densities are available. We expect that low prey availability will lead to higher competition, and in extreme cases, to the complete exclusion of one or more species. In Protected Areas with high prey availability, we expect intraguild coexistence and conspecific competition among carnivores, with spill‐over to forest‐edge habitats and subsequent prey‐switching to livestock. We stress that dhole–leopard–tiger co‐occurrence across their range is facilitated through an intricate yet fragile balance between prey availability, and intraguild and conspecific competition. Data gaps and limitations notwithstanding, our study shows how insights from fundamental ecology can be of immense utility for applied aspects like large predator conservation and management of human–carnivore interactions. Our findings also highlight potential avenues for future research on tropical carnivores that can broaden current understanding of intraguild competition in forest systems of Asia and beyond.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biological Reviews
    Article . 2023 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ZENODO
    Article . 2023
    Data sources: ZENODO
    ZENODO
    Article . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility9
    visibilityviews9
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biological Reviews
      Article . 2023 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ZENODO
      Article . 2023
      Data sources: ZENODO
      ZENODO
      Article . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yashkumar R. Patel; Jay Patel; Herilkumar N. Patel; Sankalp K. Kulkarni; +1 Authors

    {"references": ["Ebrahim Hajidavalloo (2007), \"Application of evaporative cooling on the condenser of window-air-conditioner\", Appl. Therm. Eng., Volume 27, Issue 11-12, pp. 1937-1943, Available at https://doi.org/10.1016/j.applthermaleng.2006.12.014 .", "Chainarong Chaktranond and Peachrakha Doungsong (2010), \"An Experimental evaluation of energy saving in a split type air conditioner with evaporative cooling system\" Int. Transac. J.of Eng. Mgmt and Appl. Sci and Technol., Volume 1, Issue 1, pp. 9-18, Available at https://www.slideshare.net/drboon/01-01009018itjemast-chainarong .", "Vrachopoulos, M.G., Filios, A.E., Kotsiovelos, G.T. and Kravaritis, E.D (2005), \"Incorporated evaporative condenser\" Appl. Therm. Eng., Volume 27, Issue 5-6, pp. 823-828, Available at https://doi.org/10.1016/j.applthermaleng.2006.09.021.", "T. T. Chow, Zang Lin and X.Y. Yang (2002), \"Placement of condensing units of split-type air conditioners at low-rise residences\", Appl. Therm. Eng., Volume 22, Issue 13, pp. 1431-1444,Available at https://doi.org/10.1016/S1359-4311(02)00068-6", "Reshap Arora and Rajesh Sharma (2017), \"Experimental Investigation of Evaporative Condenser with Two Cooling Pads for Window Air-Conditioner\", An International Int. Journal J. of Eng. Sci., ISSN: 2320-0332, 2017; Volume 25, pp. 11-16, Available at http://ijoes.vidyapublications.com/paper/Vol25/02-Vol25.pdf", "M.M. Kulkarni, A.V. Khandagale, P.V. Singh, S.S. Choudhary, R.D. Sharma (2016), \"Experimental Investigations of Evaporative-Cooled Condenser Split Air Conditioner\", Int. J. of Eng. Sci. and Comput., ISSN: 2321 3361, Volume 6, Issue 5, pp. 5407-5411, DOI: 10.4010/2016.1324", "K. R. Aglawe, M. S. Matey and N. P. Gudadhe (2013), \"Experimental Analysis of Window Air Conditioner using Evaporative Cooling\", International Journal of Engineering Research & Technology, ISSN: 2278-0181, Volume 2, Issue 2, pp. 1-6, Available at https://www.ijert.org/research/experimental-analysis-of-window-air-conditioner-using-evaporative-cooling-IJERTV2IS2319.pdf"]} A unit for evaporative cooling in condenser of domestic air conditioner and its performance testing on effectiveness and reduction in power consumption. Evaporative cooling in condenser of Split A.C is achieved by spraying water on the fins of condensing unit at regular interval of time. Evaporative cooling will increase the rate of heat transfer and thus further sub cooled refrigerant will be obtained at the exit of condenser. Due to this sub cooling, refrigeration effect increases which results in increase in COP and reduces power consumption.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2020
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2020
    Data sources: Datacite
    ZENODO
    Article . 2020
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility65
    visibilityviews65
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2020
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2020
      Data sources: Datacite
      ZENODO
      Article . 2020
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    The study aims to identify the policy and practice discordance of ecotourism policy initiatives in India and to understand its implications. Field and participant observation were adopted for collecting data and reviewing secondary sources. Fennel's definition analysis was used to identify the discordance in definition leading to policy and practice of ecotourism based on destinations from five provincial states of India. The study could identify several implications of these discordances, such as the unbalanced emphasis on conservation, less emphasis on local benefits, less effective monitoring, the poor linkage between conservation and incentives, pressure on the local community, democratic deficit, minimal community involvement, reduced ecosystem benefits and meager enhancement in community building. The study made a few suggestive measures to overcome these discordances in tune with constitutional provisions, national development priorities, and sustainable development goals. The study found significance in the context of sustainable development parlance to strengthen ecotourism's policy framework and garner more appropriate development that suits the local conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Book . 2022
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Book . 2022
    Data sources: Datacite
    ZENODO
    Book . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility23
    visibilityviews23
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Book . 2022
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Book . 2022
      Data sources: Datacite
      ZENODO
      Book . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arjun Srivathsa; Vivek Ramachandran; Pooja Saravanan; Abhijith Sureshbabu; +2 Authors

    ABSTRACTIntraguild interactions among carnivores have long held the fascination of ecologists. Ranging from competition to facilitation and coexistence, these interactions and their complex interplay influence everything from species persistence to ecosystem functioning. Yet, the patterns and pathways of such interactions are far from understood in tropical forest systems, particularly across countries in the Global South. Here, we examined the determinants and consequences of competitive interactions between dholes Cuon alpinus and the two large felids (leopards Panthera pardus and tigers Panthera tigris) with which they most commonly co‐occur across Asia. Using a combination of traditional and novel data sources (N = 118), we integrate information from spatial, temporal, and dietary niche dimensions. These three species have faced catastrophic declines in their extent of co‐occurrence over the past century; most of their source populations are now confined to Protected Areas. Analysis of dyadic interactions between species pairs showed a clear social hierarchy. Tigers were dominant over dholes, although pack strength in dholes helped ameliorate some of these effects; leopards were subordinate to dholes. Population‐level spatio‐temporal interactions assessed at 25 locations across Asia did not show a clear pattern of overlap or avoidance between species pairs. Diet‐profile assessments indicated that wild ungulate biomass consumption by tigers was highest, while leopards consumed more primate and livestock prey as compared to their co‐predators. In terms of prey offtake (ratio of wild prey biomass consumed to biomass available), the three species together harvested 0.4–30.2% of available prey, with the highest offtake recorded from the location where the carnivores reach very high densities. When re‐examined in the context of prey availability and offtake, locations with low wild prey availability showed spatial avoidance and temporal overlap among the carnivore pairs, and locations with high wild prey availability showed spatial overlap and temporal segregation. Based on these observations, we make predictions for 40 Protected Areas in India where temporally synchronous estimates of predator and prey densities are available. We expect that low prey availability will lead to higher competition, and in extreme cases, to the complete exclusion of one or more species. In Protected Areas with high prey availability, we expect intraguild coexistence and conspecific competition among carnivores, with spill‐over to forest‐edge habitats and subsequent prey‐switching to livestock. We stress that dhole–leopard–tiger co‐occurrence across their range is facilitated through an intricate yet fragile balance between prey availability, and intraguild and conspecific competition. Data gaps and limitations notwithstanding, our study shows how insights from fundamental ecology can be of immense utility for applied aspects like large predator conservation and management of human–carnivore interactions. Our findings also highlight potential avenues for future research on tropical carnivores that can broaden current understanding of intraguild competition in forest systems of Asia and beyond.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biological Reviews
    Article . 2023 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ZENODO
    Article . 2023
    Data sources: ZENODO
    ZENODO
    Article . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility9
    visibilityviews9
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biological Reviews
      Article . 2023 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ZENODO
      Article . 2023
      Data sources: ZENODO
      ZENODO
      Article . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yashkumar R. Patel; Jay Patel; Herilkumar N. Patel; Sankalp K. Kulkarni; +1 Authors

    {"references": ["Ebrahim Hajidavalloo (2007), \"Application of evaporative cooling on the condenser of window-air-conditioner\", Appl. Therm. Eng., Volume 27, Issue 11-12, pp. 1937-1943, Available at https://doi.org/10.1016/j.applthermaleng.2006.12.014 .", "Chainarong Chaktranond and Peachrakha Doungsong (2010), \"An Experimental evaluation of energy saving in a split type air conditioner with evaporative cooling system\" Int. Transac. J.of Eng. Mgmt and Appl. Sci and Technol., Volume 1, Issue 1, pp. 9-18, Available at https://www.slideshare.net/drboon/01-01009018itjemast-chainarong .", "Vrachopoulos, M.G., Filios, A.E., Kotsiovelos, G.T. and Kravaritis, E.D (2005), \"Incorporated evaporative condenser\" Appl. Therm. Eng., Volume 27, Issue 5-6, pp. 823-828, Available at https://doi.org/10.1016/j.applthermaleng.2006.09.021.", "T. T. Chow, Zang Lin and X.Y. Yang (2002), \"Placement of condensing units of split-type air conditioners at low-rise residences\", Appl. Therm. Eng., Volume 22, Issue 13, pp. 1431-1444,Available at https://doi.org/10.1016/S1359-4311(02)00068-6", "Reshap Arora and Rajesh Sharma (2017), \"Experimental Investigation of Evaporative Condenser with Two Cooling Pads for Window Air-Conditioner\", An International Int. Journal J. of Eng. Sci., ISSN: 2320-0332, 2017; Volume 25, pp. 11-16, Available at http://ijoes.vidyapublications.com/paper/Vol25/02-Vol25.pdf", "M.M. Kulkarni, A.V. Khandagale, P.V. Singh, S.S. Choudhary, R.D. Sharma (2016), \"Experimental Investigations of Evaporative-Cooled Condenser Split Air Conditioner\", Int. J. of Eng. Sci. and Comput., ISSN: 2321 3361, Volume 6, Issue 5, pp. 5407-5411, DOI: 10.4010/2016.1324", "K. R. Aglawe, M. S. Matey and N. P. Gudadhe (2013), \"Experimental Analysis of Window Air Conditioner using Evaporative Cooling\", International Journal of Engineering Research & Technology, ISSN: 2278-0181, Volume 2, Issue 2, pp. 1-6, Available at https://www.ijert.org/research/experimental-analysis-of-window-air-conditioner-using-evaporative-cooling-IJERTV2IS2319.pdf"]} A unit for evaporative cooling in condenser of domestic air conditioner and its performance testing on effectiveness and reduction in power consumption. Evaporative cooling in condenser of Split A.C is achieved by spraying water on the fins of condensing unit at regular interval of time. Evaporative cooling will increase the rate of heat transfer and thus further sub cooled refrigerant will be obtained at the exit of condenser. Due to this sub cooling, refrigeration effect increases which results in increase in COP and reduces power consumption.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2020
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2020
    Data sources: Datacite
    ZENODO
    Article . 2020
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility65
    visibilityviews65
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2020
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2020
      Data sources: Datacite
      ZENODO
      Article . 2020
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    The study aims to identify the policy and practice discordance of ecotourism policy initiatives in India and to understand its implications. Field and participant observation were adopted for collecting data and reviewing secondary sources. Fennel's definition analysis was used to identify the discordance in definition leading to policy and practice of ecotourism based on destinations from five provincial states of India. The study could identify several implications of these discordances, such as the unbalanced emphasis on conservation, less emphasis on local benefits, less effective monitoring, the poor linkage between conservation and incentives, pressure on the local community, democratic deficit, minimal community involvement, reduced ecosystem benefits and meager enhancement in community building. The study made a few suggestive measures to overcome these discordances in tune with constitutional provisions, national development priorities, and sustainable development goals. The study found significance in the context of sustainable development parlance to strengthen ecotourism's policy framework and garner more appropriate development that suits the local conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Book . 2022
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Book . 2022
    Data sources: Datacite
    ZENODO
    Book . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility23
    visibilityviews23
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Book . 2022
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Book . 2022
      Data sources: Datacite
      ZENODO
      Book . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph