- home
- Search
- Energy Research
- other engineering and technologies
- 7. Clean energy
- 13. Climate action
- 6. Clean water
- IR
- MY
- Energy Research
- other engineering and technologies
- 7. Clean energy
- 13. Climate action
- 6. Clean water
- IR
- MY
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing Authors: Saodah Omar; Kamarulazhar Daud; Ahmad Asri Abd Samat; Muhammad Nasrullah Abdul Manan; +1 AuthorsSaodah Omar; Kamarulazhar Daud; Ahmad Asri Abd Samat; Muhammad Nasrullah Abdul Manan; Muhammad Naqib Mat Siam;Abstract The ability of the Distributed Generation (DG) to solve problems such as power system deregulation and power demand problems appropriate to its purpose, which is to inject electricity in a distributed manner at a point close to the load, causes the distributed generation to become the latest trend in electricity generation technology. Proper position of distributed generation is necessary in order to achieved maximum benefit from DG, which could be due to an incorrect allocation of DG sources to the power network would not only result in increased power losses, but could also jeopardize the operation of the system. This paper introduces an ACO-algorithm for optimal location of DGs using a real network in one of a rural area of Malaysia. The method is used to determine the effectiveness of DG by comparing the losses of power and the improvement of the voltage profile. As for the confirmation to the ACO method, another method known as brute force method is use to compare the data gain as validation purposes.
IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1045/1/012045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1045/1/012045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 MalaysiaPublisher:MDPI AG Authors:Sheikh Ahmad Zaki;
Mohamad Faizal Rosli;Sheikh Ahmad Zaki
Sheikh Ahmad Zaki in OpenAIREHom Bahadur Rijal;
Farah Nurhanis Hassan Sadzli; +2 AuthorsHom Bahadur Rijal
Hom Bahadur Rijal in OpenAIRESheikh Ahmad Zaki;
Mohamad Faizal Rosli;Sheikh Ahmad Zaki
Sheikh Ahmad Zaki in OpenAIREHom Bahadur Rijal;
Farah Nurhanis Hassan Sadzli;Hom Bahadur Rijal
Hom Bahadur Rijal in OpenAIREAya Hagishima;
Aya Hagishima
Aya Hagishima in OpenAIREFitri Yakub;
Fitri Yakub
Fitri Yakub in OpenAIREdoi: 10.3390/su13169099
Comfort temperature and sleep quality involving 20 participants were determined in two cases: Case A (arbitrary, controlled air-conditioner setting) and Case B (adjustment of 3 °C higher than the setting of Case A with cool bed linen). Data of indoor thermal comfort and electricity consumption were collected every night throughout the measurement period. Questionnaires on thermal comfort and sleep quality were distributed twice a night for a duration of three nights for each case; the first night was for respondents’ adaptation and the following two nights were for measurement. The sleep quality of the respondents was objectively measured using a commercially available activity tracker. Results found that most respondents were thermally comfortable in both cases, with 39% lower energy consumption reported for Case B compared to Case A. The thermal conditions of Case B were found to be more tolerable than those of Case A. Most respondents reported to have a calm and satisfied sleep for both cases. Comfort temperature and Sleep Efficiency Index (SEI) were found to be maintained in both cases.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9099/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9099/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Zia Ud Din;
Zia Ud Din;Zia Ud Din
Zia Ud Din in OpenAIREZainal Alimuddin Zainal;
Zainal Alimuddin Zainal
Zainal Alimuddin Zainal in OpenAIREAbstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Mohammad Ghamsari-Yazdel;Nima Amjady;
Hamid Reza Najafi;Nima Amjady
Nima Amjady in OpenAIREAbstract In this paper, a reintegration-based multi-objective intentional controlled islanding (ICI) model is proposed to enhance resiliency of electrical power systems under catastrophic events. This remedial measure plan relies on a mixed-integer linear programming model with two objective functions including reintegration risk and total load shedding value. While ensuring that each island includes only coherent generators, the proposed multi-objective model solves the controlled islanding problem using lexicographic optimization approach. To ease the islands’ reintegration, charging reactive power, reliability, capacity, and power flow disruption of transmission lines are considered in the model. After implementation of controlled islanding, each resulted island may face temporary active/reactive load-generation imbalance, which may put the islands at the risk of frequency instability, transient voltage instability or a combination of both. The proposed model reduces these risks by modeling energy storage systems (ESSs) and static VAR compensators (SVCs) as fast corrective control actions. In addition to modeling voltage dependent loads in the controlled islanding problem, a linear island frequency response (IFR) model is proposed for frequency stability assessment. The test results of the proposed ICI model on the IEEE 39-bus and IEEE 118-bus test systems demonstrate its performance.
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2020.107018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2020.107018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2012Publisher:IET Authors: Seyyed Majid Miri-Larimi; Eishan Jalilzadeh; Mahmoud-Reza Haghifam;doi: 10.1049/cp.2012.0882
This paper proposes a method to determine the location of sectionalizing switches in presence of stochastic renewable resources. Particle swarm optimization is used for placement of sectionalizing switches with considering an objective function. The proposed objective function is composed of two terms: minimizing of cost of sectionalizing switches and maximization of reliability benefit. Monte Carlo simulation is used to reliability assessment. The performance of the proposed approach is assessed by a real distribution network.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/cp.2012.0882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/cp.2012.0882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Soheil Fathi; Andriel Evandro Fenner;Ravi S. Srinivasan;
Ravi S. Srinivasan
Ravi S. Srinivasan in OpenAIRESahand Fathi;
Sahand Fathi
Sahand Fathi in OpenAIREAbstract In developed countries, buildings are involved in almost 50% of total energy use and 30% of global green-house gas emissions. Buildings' operational energy is highly dependent on various building physical, operational, and functional characteristics, as well as meteorological and temporal properties. Besides physics-based building energy modeling, machine learning techniques can provide faster and higher accuracy estimates, given buildings' historic energy consumption data. Looking beyond individual building levels, forecasting buildings’ energy performance helps city and community managers have a better understanding of their future energy needs, and plan for satisfying them more efficiently. Focusing on an urban-scale, this study systematically reviews 70 journal articles, published in the field of building energy performance forecasting between 2015 and 2018. The recent literature have been categorized according to five criteria: 1. Learning Method, 2. Building Type, 3. Energy Type, 4. Input Data, and 5. Time-scale. The scarcity of building energy performance forecasting studies in urban-scale versus individual level is considerable. There is no study incorporating building functionality in terms of space functionality share percentages, nor assessing the effects of climate change on urban buildings energy performance using machine learning approaches and future weather scenarios. There is no optimal criteria combination for achieving the most accurate machine learning-based forecast, as there is no universal measure able to provide such global comparison. Accuracy levels are highly correlated with the characteristics of forecasting problems. The goal is to provide a comprehensive status of machine learning applications in urban building energy performance forecasting, during 2015–2018.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu190 citations 190 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohammad M. Barzegari;M. Momenifar;
S.H.M. Saadat; Ebrahim Alizadeh; +1 AuthorsM. Momenifar
M. Momenifar in OpenAIREMohammad M. Barzegari;M. Momenifar;
S.H.M. Saadat; Ebrahim Alizadeh;M. Momenifar
M. Momenifar in OpenAIREM. Ghadimi;
M. Ghadimi
M. Ghadimi in OpenAIREAbstract Clamping mechanisms have significant effect on the performance of polymer electrolyte membrane (PEM) fuel cells. In this paper, PEM fuel cell with new clamping mechanism is designed to study the contact pressure distribution over the active area of PEM fuel cell's membrane electrode assembly (MEA). The clamping pressure is pneumatically exerted on the PEM fuel cell assembly. A comparison between the conventional and new clamping mechanism is carried out with simulation, and the numerical results are validated against experimental investigation performed in the fuel cell technology research laboratory. The experimental results are gathered using embedded pressure measurement films in the designed single cell. The results achieved via finite element method are in good agreement with experimental results. It is concluded that the contact pressure distribution of MEA for the new clamping mechanism is more uniform than the conventional one.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.05.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.05.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Aklilu Tesfamichael Baheta;
Mior A. Said;Aklilu Tesfamichael Baheta
Aklilu Tesfamichael Baheta in OpenAIREAlina Adriana Minea;
Alina Adriana Minea
Alina Adriana Minea in OpenAIREK.V. Sharma;
+1 AuthorsK.V. Sharma
K.V. Sharma in OpenAIREAklilu Tesfamichael Baheta;
Mior A. Said;Aklilu Tesfamichael Baheta
Aklilu Tesfamichael Baheta in OpenAIREAlina Adriana Minea;
Alina Adriana Minea
Alina Adriana Minea in OpenAIREK.V. Sharma;
Suleiman Akilu;K.V. Sharma
K.V. Sharma in OpenAIREAbstract Hybrid nanofluids are a novel class of colloidal fluids which have drawn significant attention due to potential tailoring of their thermo-physical properties for heat transfer enhancement by a combination of more than one nano-additive to meet specific requirements of an application. In the present work, ceramic copper oxide/carbon (SiO2-CuO/C) nanoparticles in 80:20 (wt%) composition were prepared by ultrasonic-assisted wet mixing technique. The hybrid nanofluid was formulated by dispersing the nanoparticles into a base fluid mixture of 60:40 (% by mass) glycerol and ethylene glycol (G/EG) using the two-steps method. The influence of nanoparticles on the augmentation of specific heat, thermal conductivity and viscosity was examined in the volume concentration range of 0.5–2.0% in the temperature range of 303.15–353.15 K. The results demonstrate that the synthesized SiO2-CuO/C hybrid nanoparticles enhanced the thermo-physical properties of the base fluid mixture which is higher than using SiO2 alone. In the case of SiO2–G/EG nanofluid, the specific heat capacity decremented by a maximum value of 5.7% whereas the thermal conductivity and viscosity incremented by 6.9% and 1.33-times as compared with G/EG at maximum volume concentration of 2.0% at a temperature of 353.15 K. Comparatively, a reinforcement of 80% SiO2 with 20% CuO/C in G/EG mixture led to thermal conductivity and viscosity enhancement by 26.9% and 1.15-times, respectively with a significant reduction of specific heat by 21.1%. New empirical correlations were proposed based on the experimental data for evaluation of thermophysical properties.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2008Publisher:IEEE Authors: Z. Mokhtar; Khairul Nisak Md Hasan; K.S.R. Rao;Load flow and short circuit studies are the two important power system analysis components to ensure the system upgrades, future upgrades and present distribution equipment meeting the present and future requirements. A number of power system analysis softwares are used to perform the analysis. This paper presents the analysis of load flow and short circuit studies of an offshore platform using ERACS software and analyses its performance by comparing with the existing EDSA software results. The EDSA software is commonly used in industries because of its accuracy and reliability while ERACS offers a user friendly with a powerful graphical user interface. The system analysis of an offshore platform, namely TBCP-A is performed to identify the peak load of full load and load shedding condition. The modeling of the TBCP-A network is then carried out using ERACS and the load flow study simulation is performed for three different scenarios, which are normal, maintenance services and emergency condition. The short circuit simulation is executed for two scenarios, namely during load exchange between two transformers and load exchanged between transformer and the emergency diesel generator. From the analysis, it is shown that no voltage violation occurs and all the bus bar ratings are sufficient except for one which is below the short circuit current rating. The ERACS software had produced an acceptable result where the deviation in both analyses is less than 7% between the two soft wares for all scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pecon.2008.4762535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pecon.2008.4762535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Pleiades Publishing Ltd Authors:M. Abdollahzadeh;
Ali Akbar Ranjbar;M. Abdollahzadeh
M. Abdollahzadeh in OpenAIREQ. Esmaili;
Q. Esmaili
Q. Esmaili in OpenAIREA quasi two dimensional (1D + 1D), multi-component model is developed in order to analyze the two-phase transport in polymer electrolyte fuel cell. Different operating parameters, including temperature and wettability are examined and their effects are discussed. The present simple and easy to implement model can be as accurate as a complete two dimensional model. Furthermore, it is seen that the simplification made in this model reduce the computational time.
Russian Journal of E... arrow_drop_down Russian Journal of ElectrochemistryArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1023193512050023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Russian Journal of E... arrow_drop_down Russian Journal of ElectrochemistryArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1023193512050023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu