- home
- Search
- Energy Research
- 2021-2025
- 7. Clean energy
- 12. Responsible consumption
- US
- IT
- ES
- Energy Research
- 2021-2025
- 7. Clean energy
- 12. Responsible consumption
- US
- IT
- ES
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Apr 2023Publisher:Dryad Authors: Pahwa, Anmol; Jaller, Miguel;doi: 10.25338/b8w93s
This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:National Renewable Energy Laboratory - Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory (NREL), Golden, CO (United States) Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;doi: 10.7799/1845718
This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:DataverseNO Authors: Tosato, Giacomo (ENEX); Artuso, Paolo (National Research Council, Construction Technologies Institute); Minetto, Silvia (National Research Council, Construction Technologies Institute); Rossetti, Antonio (National Research Council, Construction Technologies Institute); +2 AuthorsTosato, Giacomo (ENEX); Artuso, Paolo (National Research Council, Construction Technologies Institute); Minetto, Silvia (National Research Council, Construction Technologies Institute); Rossetti, Antonio (National Research Council, Construction Technologies Institute); Allouche, Yosr (NTNU - Norwegian University of Science and Technology); Banasiak, Krzysztof (Sintef Energy);doi: 10.18710/rvlsdm
This dataset, in the context of the MultiPACK Project, describes the development of a CO2 air/water reversible heat pump, specifically investigating the domestic hot water (DHW) production operating mode. A dynamic model of the heat pump is developed with the software Simcenter Amesim. After validation against experimental data, the numerical model is utilized to predict the performance of the heat pump to varying hot water demand, evaporator air inlet conditions and high-pressure value, leading to the discussion of the optimal control strategy. A paper, based on this dataset, "Experimental and numerical investigation of a transcritical CO2 air/water reversible heat pump: analysis of domestic hot water production (14th Gustav Lorentzen Conference, Kyoto, Japan, 6th- 9th December 2020, DOI:10.18462/iir.gl.2020.1160).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18710/rvlsdm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18710/rvlsdm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2024Publisher:Zenodo Authors: Valenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; +6 AuthorsValenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; Gilson, Florent; Miraldo, Marcel C.; Matos, Flavia T.; Flickinger, Dallas L.; Dantas, Daniela P.; Rodrigues, Laurindo A.;Indicators of economic sustainability obtained for the 8 systems of LTS studied. Monoc. = monoculture; sub-trop. = subtropical; IMTA = integrated multi trophic aquaculture; “-“ = no data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 03 Apr 2023Publisher:Dryad Dunn, Jessica; Slattery, Margaret; Kendall, Alissa; Ambrose, Hanjiro; Shen, Shuhan;doi: 10.25338/b82w7q
Batteries have the potential to significantly reduce greenhouse gas emissions from on-road transportation. However, environmental and social impacts of producing lithium-ion batteries, particularly cathode materials, and concerns over material criticality are frequently highlighted as barriers to widespread electric vehicle adoption. Circular economy strategies, like reuse and recycling, can reduce impacts and secure regional supplies. To understand the potential for circularity, we undertake a dynamic global material flow analysis of pack-level materials that includes scenario analysis for changing battery cathode chemistries and electric vehicle demand. Results are produced regionwise and through the year 2040 to estimate the potential global and regional circularity of lithium, cobalt, nickel, manganese, iron, aluminum, copper, and graphite, although the analysis is focused on the cathode materials. Under idealized conditions, retired batteries could supply 60% of cobalt, 53% of lithium, 57% of manganese, and 53% of nickel globally in 2040. If the current mix of cathode chemistries evolves to a market dominated by NMC 811, a low cobalt chemistry, there is potential for 85% global circularity of cobalt in 2040. If the market steers away from cathodes containing cobalt, to an LFP-dominated market, cobalt, manganese, and nickel become less relevant and reach circularity before 2040. For each market to benefit from the recovery of secondary materials, recycling and manufacturing infrastructure must be developed in each region. This data was collected through various sources, including from EV Volumes, International Energy Agency, Argonne National Lab, and published articles. A model was created with R to process the data. R is required to open the models.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 104 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:KNB Data Repository Authors: Balaguer-Benlliure, Victor; Roger, Moya; Johana, Gaitán-Alvarez;doi: 10.5063/ft8jgp
This data contents information about parental wood and charcoal characteristics of 16 tropical species growing in fast-growth condictions. The data details tha following characterist of parental wood: moisture content (PMC) and wood density (PWD). On the others hand the charcoal characteristics are: Density (CD), moisture content (CMC) and compression strength of charcoal, gross calorific value (GCV), ash and volatile matter and fixed carbon, Carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) contents, C/N ratio, O/Cmol ratio and H/Cmol ratio. Besides it is presented FTIR spectra and the ignition temperature (Ti), the burnout temperature (Tf), the characteristic combustion index (S), the ignition index (Di), the time corresponding to the maximum combustion rate (tp), the ignition time (tig), and the average rate of combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), China (People's Republic of), United StatesPublisher:Elsevier BV Han Li; Zhe Wang; Tianzhen Hong; Andrew Parker; Monica Neukomm;The rapid development of advanced metering infrastructure provides a new data source—building electrical load profiles with high temporal resolution. Electric load profile characterization can generate useful information to enhance building energy modeling and provide metrics to represent patterns and variability of load profiles. Such characterizations can be used to identify changes to building electricity demand due to operations or faulty equipment and controls. In this study, we proposed a two-path approach to analyze high temporal resolution building electrical load profiles: (1) time-domain analysis and (2) frequency-domain analysis. The commonly adopted time-domain analysis can extract and quantify the distribution of key parameters characterizing load shape such as peak-base load ratio and morning rise time, while a frequency-domain analysis can identify major periodic fluctuations and quantify load variability. We implemented and evaluated both paths using whole-year 15-minute interval smart meter data of 188 commercial office building in Northern California. The results from these two paths are consistent with each other and complementary to represent full dynamics of load profiles. The time- and frequency-domain analyses can be used to enhance building energy modeling by: (1) providing more realistic assumptions about building operation schedules, and (2) validating the simulated electric load profiles using the developed variability metrics against the real building load data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Samanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; +1 AuthorsSamanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; Gonzalo Jiménez;Abstract AP1000® Generation III+ reactor bases its safety concept on passive systems, differently from the previous Generation II reactors. This fact has led the approximations and methodologies previously used for modeling active safety systems to be reviewed and adapted to simulate the physics of passive systems. Diverse studies about the AP1000 containment have demonstrated the difficulty to correctly model the occurring phenomenology. In this paper, an integral AP1000 3D containment GOTHIC model is presented, including the Passive Containment Cooling System (PCCS). The model includes the compartments inside and outside the metallic containment liner that influence the thermal–hydraulic behavior. The model is tested against a Large Break Loss of Coolant Accident (LBLOCA) to assess its thermal–hydraulic performance, assuming a PCS tank malfunction, what is a conservative hypothesis. The pressure and temperature evolution predicted by the 3D containment model is analyzed and compared with a single node Lumped Parameters model, allowing to evaluate some preliminary benefits of 3D modeling for containment safety analysis. The 3D containment model allows to predict the thermal evolution in each containment compartment capturing the heterogeneity of this phenomenon, with higher resolution than the lumped parameters models traditionally used in this kind of analyses. It allows to observe the thermohydraulic conditions locally at any time during the transient.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Apr 2023Publisher:Dryad Authors: Pahwa, Anmol; Jaller, Miguel;doi: 10.25338/b8w93s
This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:National Renewable Energy Laboratory - Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory (NREL), Golden, CO (United States) Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;doi: 10.7799/1845718
This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:DataverseNO Authors: Tosato, Giacomo (ENEX); Artuso, Paolo (National Research Council, Construction Technologies Institute); Minetto, Silvia (National Research Council, Construction Technologies Institute); Rossetti, Antonio (National Research Council, Construction Technologies Institute); +2 AuthorsTosato, Giacomo (ENEX); Artuso, Paolo (National Research Council, Construction Technologies Institute); Minetto, Silvia (National Research Council, Construction Technologies Institute); Rossetti, Antonio (National Research Council, Construction Technologies Institute); Allouche, Yosr (NTNU - Norwegian University of Science and Technology); Banasiak, Krzysztof (Sintef Energy);doi: 10.18710/rvlsdm
This dataset, in the context of the MultiPACK Project, describes the development of a CO2 air/water reversible heat pump, specifically investigating the domestic hot water (DHW) production operating mode. A dynamic model of the heat pump is developed with the software Simcenter Amesim. After validation against experimental data, the numerical model is utilized to predict the performance of the heat pump to varying hot water demand, evaporator air inlet conditions and high-pressure value, leading to the discussion of the optimal control strategy. A paper, based on this dataset, "Experimental and numerical investigation of a transcritical CO2 air/water reversible heat pump: analysis of domestic hot water production (14th Gustav Lorentzen Conference, Kyoto, Japan, 6th- 9th December 2020, DOI:10.18462/iir.gl.2020.1160).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18710/rvlsdm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18710/rvlsdm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2024Publisher:Zenodo Authors: Valenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; +6 AuthorsValenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; Gilson, Florent; Miraldo, Marcel C.; Matos, Flavia T.; Flickinger, Dallas L.; Dantas, Daniela P.; Rodrigues, Laurindo A.;Indicators of economic sustainability obtained for the 8 systems of LTS studied. Monoc. = monoculture; sub-trop. = subtropical; IMTA = integrated multi trophic aquaculture; “-“ = no data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 03 Apr 2023Publisher:Dryad Dunn, Jessica; Slattery, Margaret; Kendall, Alissa; Ambrose, Hanjiro; Shen, Shuhan;doi: 10.25338/b82w7q
Batteries have the potential to significantly reduce greenhouse gas emissions from on-road transportation. However, environmental and social impacts of producing lithium-ion batteries, particularly cathode materials, and concerns over material criticality are frequently highlighted as barriers to widespread electric vehicle adoption. Circular economy strategies, like reuse and recycling, can reduce impacts and secure regional supplies. To understand the potential for circularity, we undertake a dynamic global material flow analysis of pack-level materials that includes scenario analysis for changing battery cathode chemistries and electric vehicle demand. Results are produced regionwise and through the year 2040 to estimate the potential global and regional circularity of lithium, cobalt, nickel, manganese, iron, aluminum, copper, and graphite, although the analysis is focused on the cathode materials. Under idealized conditions, retired batteries could supply 60% of cobalt, 53% of lithium, 57% of manganese, and 53% of nickel globally in 2040. If the current mix of cathode chemistries evolves to a market dominated by NMC 811, a low cobalt chemistry, there is potential for 85% global circularity of cobalt in 2040. If the market steers away from cathodes containing cobalt, to an LFP-dominated market, cobalt, manganese, and nickel become less relevant and reach circularity before 2040. For each market to benefit from the recovery of secondary materials, recycling and manufacturing infrastructure must be developed in each region. This data was collected through various sources, including from EV Volumes, International Energy Agency, Argonne National Lab, and published articles. A model was created with R to process the data. R is required to open the models.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 104 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:KNB Data Repository Authors: Balaguer-Benlliure, Victor; Roger, Moya; Johana, Gaitán-Alvarez;doi: 10.5063/ft8jgp
This data contents information about parental wood and charcoal characteristics of 16 tropical species growing in fast-growth condictions. The data details tha following characterist of parental wood: moisture content (PMC) and wood density (PWD). On the others hand the charcoal characteristics are: Density (CD), moisture content (CMC) and compression strength of charcoal, gross calorific value (GCV), ash and volatile matter and fixed carbon, Carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) contents, C/N ratio, O/Cmol ratio and H/Cmol ratio. Besides it is presented FTIR spectra and the ignition temperature (Ti), the burnout temperature (Tf), the characteristic combustion index (S), the ignition index (Di), the time corresponding to the maximum combustion rate (tp), the ignition time (tig), and the average rate of combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), China (People's Republic of), United StatesPublisher:Elsevier BV Han Li; Zhe Wang; Tianzhen Hong; Andrew Parker; Monica Neukomm;The rapid development of advanced metering infrastructure provides a new data source—building electrical load profiles with high temporal resolution. Electric load profile characterization can generate useful information to enhance building energy modeling and provide metrics to represent patterns and variability of load profiles. Such characterizations can be used to identify changes to building electricity demand due to operations or faulty equipment and controls. In this study, we proposed a two-path approach to analyze high temporal resolution building electrical load profiles: (1) time-domain analysis and (2) frequency-domain analysis. The commonly adopted time-domain analysis can extract and quantify the distribution of key parameters characterizing load shape such as peak-base load ratio and morning rise time, while a frequency-domain analysis can identify major periodic fluctuations and quantify load variability. We implemented and evaluated both paths using whole-year 15-minute interval smart meter data of 188 commercial office building in Northern California. The results from these two paths are consistent with each other and complementary to represent full dynamics of load profiles. The time- and frequency-domain analyses can be used to enhance building energy modeling by: (1) providing more realistic assumptions about building operation schedules, and (2) validating the simulated electric load profiles using the developed variability metrics against the real building load data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Samanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; +1 AuthorsSamanta Estévez-Albuja; Kevin Fernández-Cosials; Carlos Vázquez-Rodríguez; Zuriñe Goñi-Velilla; Gonzalo Jiménez;Abstract AP1000® Generation III+ reactor bases its safety concept on passive systems, differently from the previous Generation II reactors. This fact has led the approximations and methodologies previously used for modeling active safety systems to be reviewed and adapted to simulate the physics of passive systems. Diverse studies about the AP1000 containment have demonstrated the difficulty to correctly model the occurring phenomenology. In this paper, an integral AP1000 3D containment GOTHIC model is presented, including the Passive Containment Cooling System (PCCS). The model includes the compartments inside and outside the metallic containment liner that influence the thermal–hydraulic behavior. The model is tested against a Large Break Loss of Coolant Accident (LBLOCA) to assess its thermal–hydraulic performance, assuming a PCS tank malfunction, what is a conservative hypothesis. The pressure and temperature evolution predicted by the 3D containment model is analyzed and compared with a single node Lumped Parameters model, allowing to evaluate some preliminary benefits of 3D modeling for containment safety analysis. The 3D containment model allows to predict the thermal evolution in each containment compartment capturing the heterogeneity of this phenomenon, with higher resolution than the lumped parameters models traditionally used in this kind of analyses. It allows to observe the thermohydraulic conditions locally at any time during the transient.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2021.111442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu