- home
- Search
- Energy Research
- engineering and technology
- 15. Life on land
- IT
- DE
- EU
- Energy Research
- engineering and technology
- 15. Life on land
- IT
- DE
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | IS-ENES2, ANR | L-IPSLEC| IS-ENES2 ,ANR| L-IPSLAmadou Thierno Gaye; Xavier Capet; Juliette Mignot; Adama Sylla; Adama Sylla;Upwelling processes bring nutrient-rich waters from the deep ocean to the surface. Areas of upwelling are often associated with high productivity, offering great economic value in terms of fisheries. The sensitivity of spring/summer-time coastal upwelling systems to climate change has recently received a lot of attention. Several studies have suggested that their intensity may increase in the future while other authors have shown decreasing intensity in their equatorward portions. Yet, recent observations do not show robust evidence of this intensification. The Senegalo-Mauritanian upwelling system (SMUS) located at the southern edge of the north Atlantic system (12°N–20°N) and most active in winter/spring has been largely excluded from these studies. Here, the seasonal cycle of the SMUS and its response to climate change is investigated in the database of the Coupled Models Inter comparison Project Phase 5 (CMIP5). Upwelling magnitude and surface signature are characterized by several sea surface temperature and wind stress indices. We highlight the ability of the climate models to reproduce the system, as well as their biases. The simulations suggest that the intensity of the SMUS winter/spring upwelling will moderately decrease in the future, primarily because of a reduction of the wind forcing linked to a northward shift of Azores anticyclone and a more regional modulation of the low pressures found over Northwest Africa. The implications of such an upwelling reduction on the ecosystems and local communities exploiting them remains very uncertain.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Publisher:Public Library of Science (PLoS) Publicly fundedAuthors: Lijuan Miao; Daniel Müller; Xuefeng Cui; Meihong Ma;Climate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United Kingdom, United StatesPublisher:Springer Science and Business Media LLC A. Park Williams; A. Park Williams; Chris Funk; Chris Funk; Marcin Koprowski; Iain Robertson; Neil J. Loader; Joel Michaelsen; Tommy H. G. Wils; Zewdu Eshetu; Sara A. Rauscher;We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s–1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Springer Science and Business Media LLC Ruth Offermann; Thilo Seidenberger; Daniela Thrän; Martin Kaltschmitt; Sergey Zinoviev; Stanislav Miertus;So far, various studies assessed global biomass potentials and came up with widely varying results. Existing potential estimates range from 0 EJ/a up to more than 1,550 EJ/a which corresponds to about three times the current global primary energy consumption. This paper provides an overview of the available research on bioenergy potentials and reviews the different assessments qualitative way with the objective to interpret previous research in an integrated way. In the context of this paper we understand bioenergy as energy from biomass sources including energy crops, residues, byproducts and wastes from agriculture, forestry, food production and waste management. In this review special attention was paid to the difference between residue and energy potentials, land availability estimates, and the geographical resolution of existing potential estimates. The majority of studies concentrate on energy crop potentials retrieved from surplus agricultural land and only few publications assess global potentials separated by different world regions. It results that land allocated to the exclusive production of energy crops varies from 0 to 7,000 ha, depending on land category and scenario assumptions. Only a small number of available potential assessments consider residue potentials as well as energy crop potentials from degraded land. Future energy crop potentials are assumed to vary in the mean from 200 to 600 EJ/yr. In contrast residue potentials are expected to contribute between 62 and 325 EJ/yr. The highest potentials are assigned to Asia, Africa and South America while Europe, North America and the Pacific region contribute minor parts to the global potential.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-010-9247-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-010-9247-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Springer Science and Business Media LLC Behling, R.; Roessner, S.; Förster, S.; Saemian, P.; Tourian, M.; Portele, T.; Lorenz, C.;AbstractIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km$$^2$$ 2 ) and a significant cultivation intensification (48,000 km$$^2$$ 2 ). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km$$^2$$ 2 ), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km$$^2$$ 2 , mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 PortugalPublisher:MDPI AG Funded by:EC | AmbitionEC| AmbitionPedro M. A. Pereira; Joana R. Bernardo; Luisa Bivar Roseiro; Francisco Gírio; Rafał M. Łukasik;Biomass pre-treatment is a key step in achieving the economic competitiveness of biomass conversion. In the present work, an imidazole pre-treatment process was performed and evaluated using wheat straw and eucalyptus residues as model feedstocks for agriculture and forest-origin biomasses, respectively. Results showed that imidazole is an efficient pre-treatment agent; however, better results were obtained for wheat straw due to the recalcitrant behavior of eucalyptus residues. The temperature had a stronger effect than time on wheat straw pre-treatment but at 160 °C and 4 h, similar results were obtained for cellulose and hemicellulose content from both biomasses (ca. 54% and 24%, respectively). Lignin content in the pre-treated solid was higher for eucalyptus residues (16% vs. 4%), as expected. Enzymatic hydrolysis, applied to both biomasses after different pre-treatments, revealed that results improved with increasing temperature/time for wheat straw. However, these conditions had no influence on the results for eucalyptus residues, with very low glucan to glucose enzymatic hydrolysis yield (93% for wheat straw vs. 40% for eucalyptus residues). Imidazole can therefore be considered as a suitable solvent for herbaceous biomass pre-treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules26247591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 53 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules26247591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Authors: Antonietta Ivona;doi: 10.3390/su13168854
handle: 11586/394398
Since the 1970s but with greater intensity in the 1980s, strong, social, economic, and cultural transformations have led to the post-Fordist or post-productivist countryside determining what researchers identify as “rural restructuring” [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Salvatore Squatrito; Elena Arena; Rosa Palmeri; Biagio Fallico;doi: 10.3390/su12020606
From the comparison of regulations and/or standards for the organic, conventional and/or integrated citrus production method and a voluntary certification, it emerges that farms certified with voluntary non-regulated certification systems, such as the IFA FV GLOBALG.A.P, are obliged to take into account the highest number of aspects, reported in a more complete register, than the organic ones. Moreover, this is also supported by a continuous-time planned process of revision and updating of the applicable versions of the standard. The environmental impact of the food production, the safety aspects of food products, as well as the health, ethics, and safety aspects of workers, are largely considered and inspected in the GLOBALG.A.P., while the organic system, despite the IFOAM suggestions and indications, is only considered partially. This means that, from a practical point of view, the organic product can be considered “clean and safe”, but not more environmentally friendly than the GLOBALG.A.P. products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Schweizerbart Gutsch, M.; Lasch-Born, P.; Lüttger, A.; Suckow, F.; Murawski, A.; Pilz, T.;In the future, Germany's land-use policies and the impacts of climate change on yields will affect the amount of biomass available for energy production. We used recent published data on biomass potentials in the federal states of Germany to assess the uncertainty caused by climate change effects in the potential supply of biomass available for energy production. In this study we selected three climate scenarios representing the maximum, mean and minimum temperature increase for Germany out of 21 CMIP5-projections driven by the Representative Concentration Pathways (RCP) 8.5 scenario. Each of the three selected projections was downscaled using the regional statistical climate model STARS. We analysed the yield changes of four biomass feedstock crops (forest, short-rotation coppices (SRC), cereal straw (winter wheat) and energy maize) for the period 2031–2060 in comparison to 1981–2010. The mean annual yield changes of energy wood from forest and short-rotation coppices were modelled using the process-based forest growth model 4C. The yield changes of winter wheat and energy maize from agricultural production were simulated with the statistical yield model IRMA. Germany's annual biomass potential of 1500 PJ varies between minus 5 % and plus 8 % depending on the climate scenario realisation. Assuming that 1500 PJ of biomass utilisation can be achieved, climate change effects of minus 75 (5 %) PJ or plus 120 (8 %) PJ do not impede overall bioenergy targets of 1287 PJ in 2020 and 1534 PJ in 2050. In five federal states the climate scenarios lead to decreasing yields of energy maize and winter wheat. Impacts of climate scenarios on forest yields are mainly positive and show both positive and negative effects on yields of SRC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2015/0532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2015/0532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC G, Filippa; Cremonese, E.; Galvagno, M.; Migliavacca, M.; Morra Di Cella, U.; Petey, M.; Siniscalco, C;pmid: 25933668
The increasingly important effect of climate change and extremes on alpine phenology highlights the need to establish accurate monitoring methods to track inter-annual variation (IAV) and long-term trends in plant phenology. We evaluated four different indices of phenological development (two for plant productivity, i.e., green biomass and leaf area index; two for plant greenness, i.e., greenness from visual inspection and from digital images) from a 5-year monitoring of ecosystem phenology, here defined as the seasonal development of the grassland canopy, in a subalpine grassland site (NW Alps). Our aim was to establish an effective observation strategy that enables the detection of shifts in grassland phenology in response to climate trends and meteorological extremes. The seasonal development of the vegetation at this site appears strongly controlled by snowmelt mostly in its first stages and to a lesser extent in the overall development trajectory. All indices were able to detect an anomalous beginning of the growing season in 2011 due to an exceptionally early snowmelt, whereas only some of them revealed a later beginning of the growing season in 2013 due to a late snowmelt. A method is developed to derive the number of samples that maximise the trade-off between sampling effort and accuracy in IAV detection in the context of long-term phenology monitoring programmes. Results show that spring phenology requires a smaller number of samples than autumn phenology to track a given target of IAV. Additionally, productivity indices (leaf area index and green biomass) have a higher sampling requirement than greenness derived from visual estimation and from the analysis of digital images. Of the latter two, the analysis of digital images stands out as the more effective, rapid and objective method to detect IAV in vegetation development.
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-015-0999-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-015-0999-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | IS-ENES2, ANR | L-IPSLEC| IS-ENES2 ,ANR| L-IPSLAmadou Thierno Gaye; Xavier Capet; Juliette Mignot; Adama Sylla; Adama Sylla;Upwelling processes bring nutrient-rich waters from the deep ocean to the surface. Areas of upwelling are often associated with high productivity, offering great economic value in terms of fisheries. The sensitivity of spring/summer-time coastal upwelling systems to climate change has recently received a lot of attention. Several studies have suggested that their intensity may increase in the future while other authors have shown decreasing intensity in their equatorward portions. Yet, recent observations do not show robust evidence of this intensification. The Senegalo-Mauritanian upwelling system (SMUS) located at the southern edge of the north Atlantic system (12°N–20°N) and most active in winter/spring has been largely excluded from these studies. Here, the seasonal cycle of the SMUS and its response to climate change is investigated in the database of the Coupled Models Inter comparison Project Phase 5 (CMIP5). Upwelling magnitude and surface signature are characterized by several sea surface temperature and wind stress indices. We highlight the ability of the climate models to reproduce the system, as well as their biases. The simulations suggest that the intensity of the SMUS winter/spring upwelling will moderately decrease in the future, primarily because of a reduction of the wind forcing linked to a northward shift of Azores anticyclone and a more regional modulation of the low pressures found over Northwest Africa. The implications of such an upwelling reduction on the ecosystems and local communities exploiting them remains very uncertain.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Publisher:Public Library of Science (PLoS) Publicly fundedAuthors: Lijuan Miao; Daniel Müller; Xuefeng Cui; Meihong Ma;Climate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United Kingdom, United StatesPublisher:Springer Science and Business Media LLC A. Park Williams; A. Park Williams; Chris Funk; Chris Funk; Marcin Koprowski; Iain Robertson; Neil J. Loader; Joel Michaelsen; Tommy H. G. Wils; Zewdu Eshetu; Sara A. Rauscher;We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s–1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Springer Science and Business Media LLC Ruth Offermann; Thilo Seidenberger; Daniela Thrän; Martin Kaltschmitt; Sergey Zinoviev; Stanislav Miertus;So far, various studies assessed global biomass potentials and came up with widely varying results. Existing potential estimates range from 0 EJ/a up to more than 1,550 EJ/a which corresponds to about three times the current global primary energy consumption. This paper provides an overview of the available research on bioenergy potentials and reviews the different assessments qualitative way with the objective to interpret previous research in an integrated way. In the context of this paper we understand bioenergy as energy from biomass sources including energy crops, residues, byproducts and wastes from agriculture, forestry, food production and waste management. In this review special attention was paid to the difference between residue and energy potentials, land availability estimates, and the geographical resolution of existing potential estimates. The majority of studies concentrate on energy crop potentials retrieved from surplus agricultural land and only few publications assess global potentials separated by different world regions. It results that land allocated to the exclusive production of energy crops varies from 0 to 7,000 ha, depending on land category and scenario assumptions. Only a small number of available potential assessments consider residue potentials as well as energy crop potentials from degraded land. Future energy crop potentials are assumed to vary in the mean from 200 to 600 EJ/yr. In contrast residue potentials are expected to contribute between 62 and 325 EJ/yr. The highest potentials are assigned to Asia, Africa and South America while Europe, North America and the Pacific region contribute minor parts to the global potential.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-010-9247-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-010-9247-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Springer Science and Business Media LLC Behling, R.; Roessner, S.; Förster, S.; Saemian, P.; Tourian, M.; Portele, T.; Lorenz, C.;AbstractIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km$$^2$$ 2 ) and a significant cultivation intensification (48,000 km$$^2$$ 2 ). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km$$^2$$ 2 ), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km$$^2$$ 2 , mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 PortugalPublisher:MDPI AG Funded by:EC | AmbitionEC| AmbitionPedro M. A. Pereira; Joana R. Bernardo; Luisa Bivar Roseiro; Francisco Gírio; Rafał M. Łukasik;Biomass pre-treatment is a key step in achieving the economic competitiveness of biomass conversion. In the present work, an imidazole pre-treatment process was performed and evaluated using wheat straw and eucalyptus residues as model feedstocks for agriculture and forest-origin biomasses, respectively. Results showed that imidazole is an efficient pre-treatment agent; however, better results were obtained for wheat straw due to the recalcitrant behavior of eucalyptus residues. The temperature had a stronger effect than time on wheat straw pre-treatment but at 160 °C and 4 h, similar results were obtained for cellulose and hemicellulose content from both biomasses (ca. 54% and 24%, respectively). Lignin content in the pre-treated solid was higher for eucalyptus residues (16% vs. 4%), as expected. Enzymatic hydrolysis, applied to both biomasses after different pre-treatments, revealed that results improved with increasing temperature/time for wheat straw. However, these conditions had no influence on the results for eucalyptus residues, with very low glucan to glucose enzymatic hydrolysis yield (93% for wheat straw vs. 40% for eucalyptus residues). Imidazole can therefore be considered as a suitable solvent for herbaceous biomass pre-treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules26247591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 53 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules26247591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Authors: Antonietta Ivona;doi: 10.3390/su13168854
handle: 11586/394398
Since the 1970s but with greater intensity in the 1980s, strong, social, economic, and cultural transformations have led to the post-Fordist or post-productivist countryside determining what researchers identify as “rural restructuring” [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Salvatore Squatrito; Elena Arena; Rosa Palmeri; Biagio Fallico;doi: 10.3390/su12020606
From the comparison of regulations and/or standards for the organic, conventional and/or integrated citrus production method and a voluntary certification, it emerges that farms certified with voluntary non-regulated certification systems, such as the IFA FV GLOBALG.A.P, are obliged to take into account the highest number of aspects, reported in a more complete register, than the organic ones. Moreover, this is also supported by a continuous-time planned process of revision and updating of the applicable versions of the standard. The environmental impact of the food production, the safety aspects of food products, as well as the health, ethics, and safety aspects of workers, are largely considered and inspected in the GLOBALG.A.P., while the organic system, despite the IFOAM suggestions and indications, is only considered partially. This means that, from a practical point of view, the organic product can be considered “clean and safe”, but not more environmentally friendly than the GLOBALG.A.P. products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Schweizerbart Gutsch, M.; Lasch-Born, P.; Lüttger, A.; Suckow, F.; Murawski, A.; Pilz, T.;In the future, Germany's land-use policies and the impacts of climate change on yields will affect the amount of biomass available for energy production. We used recent published data on biomass potentials in the federal states of Germany to assess the uncertainty caused by climate change effects in the potential supply of biomass available for energy production. In this study we selected three climate scenarios representing the maximum, mean and minimum temperature increase for Germany out of 21 CMIP5-projections driven by the Representative Concentration Pathways (RCP) 8.5 scenario. Each of the three selected projections was downscaled using the regional statistical climate model STARS. We analysed the yield changes of four biomass feedstock crops (forest, short-rotation coppices (SRC), cereal straw (winter wheat) and energy maize) for the period 2031–2060 in comparison to 1981–2010. The mean annual yield changes of energy wood from forest and short-rotation coppices were modelled using the process-based forest growth model 4C. The yield changes of winter wheat and energy maize from agricultural production were simulated with the statistical yield model IRMA. Germany's annual biomass potential of 1500 PJ varies between minus 5 % and plus 8 % depending on the climate scenario realisation. Assuming that 1500 PJ of biomass utilisation can be achieved, climate change effects of minus 75 (5 %) PJ or plus 120 (8 %) PJ do not impede overall bioenergy targets of 1287 PJ in 2020 and 1534 PJ in 2050. In five federal states the climate scenarios lead to decreasing yields of energy maize and winter wheat. Impacts of climate scenarios on forest yields are mainly positive and show both positive and negative effects on yields of SRC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2015/0532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2015/0532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC G, Filippa; Cremonese, E.; Galvagno, M.; Migliavacca, M.; Morra Di Cella, U.; Petey, M.; Siniscalco, C;pmid: 25933668
The increasingly important effect of climate change and extremes on alpine phenology highlights the need to establish accurate monitoring methods to track inter-annual variation (IAV) and long-term trends in plant phenology. We evaluated four different indices of phenological development (two for plant productivity, i.e., green biomass and leaf area index; two for plant greenness, i.e., greenness from visual inspection and from digital images) from a 5-year monitoring of ecosystem phenology, here defined as the seasonal development of the grassland canopy, in a subalpine grassland site (NW Alps). Our aim was to establish an effective observation strategy that enables the detection of shifts in grassland phenology in response to climate trends and meteorological extremes. The seasonal development of the vegetation at this site appears strongly controlled by snowmelt mostly in its first stages and to a lesser extent in the overall development trajectory. All indices were able to detect an anomalous beginning of the growing season in 2011 due to an exceptionally early snowmelt, whereas only some of them revealed a later beginning of the growing season in 2013 due to a late snowmelt. A method is developed to derive the number of samples that maximise the trade-off between sampling effort and accuracy in IAV detection in the context of long-term phenology monitoring programmes. Results show that spring phenology requires a smaller number of samples than autumn phenology to track a given target of IAV. Additionally, productivity indices (leaf area index and green biomass) have a higher sampling requirement than greenness derived from visual estimation and from the analysis of digital images. Of the latter two, the analysis of digital images stands out as the more effective, rapid and objective method to detect IAV in vegetation development.
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-015-0999-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-015-0999-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu