- home
- Search
- Energy Research
- 11. Sustainability
- IT
- EU
- Energy Procedia
- Energy Research
- 11. Sustainability
- IT
- EU
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Shanyu Zhao; Samuel Brunner; Stefano Aliprandi; R. Galliano; Gabriele Masera; Thomas Stahl;AbstractAlthough the application of internal insulation to existing perimeter walls poses significant challenges in terms of building physics and loss of habitable space, it is sometimes an inevitable choice because of practical or legislative constraints. Innovative solutions are then required to deliver satisfying performances and reduce nuisance to inhabitants of residential buildings in case they are going to remain in their flats during the retrofit works.Three systems for inner thermal retrofitting purposes have been designed and produced as prototypes. Two of them are composed by silica aerogel containing fibrous material: the first one is a rigid flat laminated panel, the second one is a rollable solution with a fabric finishing layer. The third insulating system is a perlite based board with a hydrophobic layer. All the materials composing the retrofit solutions have been characterized by means of laboratory tests in order to measure their main hygrothermal properties. In fact, some parameters are fundamental for determining the hygrothermal performance of the composite systems: thermal conductivity, at dry and wet state (moisture dependant), water vapour diffusion resistance factor, hygroscopic sorption at isotherm condition and water absorption coefficient. All those measured data were necessary for optimizing the solutions, guaranteeing energy efficiency and vapour open layers to systems that are intended for installation on existing walls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Natale Arcuri; Marilena De Simone; Cristina Carpino;Abstract European and Italian standards establish high levels of energy performance of buildings that have to be designed considering their energy balance near zero. To achieve this goal, the reduction of energy demand, attainable by improving energy efficiency of the construction, and the use of renewable energy available both on site and off site are effective solutions to be applied. In particular, in buildings that use energy produced from renewable sources, due to their unstable and unpredictable nature, having the right strategy to compensate the variations is essential. A technical solution reevaluated as a consequence of passive design principles, is to provide an adequate thermal inertia in order to store energy when it is offered and to use it when the source is not available. In these cases, the ability of construction elements to retain heat becomes fundamental as they contribute to maintain internal comfort conditions. This paper aims to investigate how various types of heating and cooling systems, based on different modes of heat transfer, are able to interact differently with the thermal mass of the building, producing a different level of its activation. The investigation considers a case study used to carry out dynamic simulation by means of DesignBuilder which is a user interface of EnergyPlus. The model consists of a building with elementary geometry and a single thermal zone, delimited by walls with outside thermal insulation and a heat accumulation layer inside. The variation of the internal temperature by using different types of conditioning system is analyzed in order to individuate the technology that takes the greatest advantages from the thermal mass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV E. Valentini; A. De Pascale; F. Lussu; Lisa Branchini; P. Cagnoli; V. Orlandini;AbstractIn the last years, the number of installed biofuels power plants is increased in northern Italy, due to favorable legislation on renewable energy sources, posing the issue to assess the resulting environmental effects. The European legislation on emissions for renewable fuels power plants provides guidelines to be integrated in the local regulations; moreover, local authorities have to identify the critical power plants in terms of pollution and the key parameters to grant licenses for the future plants.The aim of this paper is to describe a methodology and the calculation routine developed to assess the environmental effects of biomass plants in terms of simple indexes. The used approach is based on the Cross-Media Effects described by a European Commission Reference Document. In particular, several indexes are introduced to cover the most relevant environmental effects, as: air toxicity, global warming, acidification, eutrophication and photochemical ozone creation. For every considered pollutant (such as NOx, CO, etc.) directly emitted by the power plant, specific factors have been identified, in order to calculate the contribution to the different environmental indexes. Finally, a numerical evaluation of different biomass power plants, installed in Emilia Romagna region, is provided, in order to assess their environmental cross-media potential and to compare such kind of power plants with large scale, fossil-fuelled power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ferdinando Salata; Andrea de Lieto Vollaro; Roberto De Lieto Vollaro;AbstractRecently, great attention has been given to the transition from centralized to distributed generation energy production systems. There is a growing potential regarding the use of trigeneration systems in the residential sector because they have the ability to produce thermal energy and electricity from a single source of fuel.This study has the goal to determine the best systems able to satisfy the demand for electricity and thermal energy for a complex of historic buildings in Rome. Such analysis has been conducted using a specific tool conceived for energetic and financial analysis: the RETScreen software.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 BelgiumPublisher:Elsevier BV Funded by:EC | ECO-LIFEEC| ECO-LIFEAuthors: Himpe, Eline; Van de Putte, Stijn; Laverge, Jelle; Janssens, Arnold;AbstractThe first year commissioning activities in 4 multi-family buildings from a zero-carbon neighbourhood is presented, with focus on the operation of the ventilation systems, the indoor climate and user acceptance. The key parameters to detect the main system failures are identified and the effect of the detected defects and failures on the energy performance of the dwellings is explored using dynamic simulations and monitoring data. It is concluded that commissioning of the building systems during occupancy is a vital part of the operational lifetime of a building project in order to achieve the high building performance targets in reality.
Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017Publisher:Elsevier BV Funded by:EC | SMART GEMSEC| SMART GEMSMarina Laskari; Francesco Carducci; Daniela Isidori; Martina Senzacqua; Laura Standardi; Cristina Cristalli;Abstract Thermostatically controlled loads in commercial buildings are usually ruled by set points indicated by well-established international standards like EN 15251. These thresholds set the acceptable comfort ranges based on several parameters such as activity level, climatic conditions and building orientation. However, there are so many aspects which can affect the occupant perception of comfort ranging from physical and mental aspects to cultural aspects while only few of them are clearly measurable. This paper presents a methodology for the simultaneous subjective and objective evaluation of thermal comfort in commercial buildings. The methodology is based on the intermediate protocol level for the evaluation of thermal comfort as suggested by ASHRAE’s Performance Measurement Protocols for Commercial Buildings. It is applied in the office spaces of the Loccioni Leaf Lab, located in the province of Ancona, Italy, during the summer period. The study is utilized for the identification of serious thermal comfort issues but also for the determination of the preferred comfort conditions in the Leaf Lab office spaces.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 35visibility views 35 download downloads 54 Powered bymore_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Authors: Mutani, Guglielmina; Todeschi, Valeria;Today 54 % of the world's population resides in urban areas and in 2050 the projections are for 66 %. Therefore, the issue of city sustainability becomes increasingly important. This paper analyzes city energy sustainability with consideration to the complex built environment, high population densities, anthropogenic activities, energy demands, environmental impacts, as well as limits on both space availability and renewable energy sources. The evaluation considers models of thermal energy consumption for both residential and non-residential buildings based on a GIS tool. The thermal energy-use models consider established statistical methods as well as the introduction of energy-dependent urban-scale variables.
Energy Procedia arrow_drop_down Publications Open Repository TOrinoConference object . 2017Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Publications Open Repository TOrinoConference object . 2017Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | PLANGRIDEVEC| PLANGRIDEVAuthors: A. Santiangeli; F. Zuccari; Fabio Orecchini; Alessandro Dell’Era;AbstractThe energy sustainability, in the era of sources diversification [1], can be guaranteed by an energy resources utilization most correct, foreseeing no predominance of one source over the others in any area of the world but a proper energy mix, based on locally available resources and needs [2]-[4]. In this scenario, manageable with a smart grid system [5], [6], a virtuous use of RES must be visible, recognizable and quantifiable, in one word traceable [7]. The innovation of the traceability concept consists in the possibility of having information concerning the exact origin of the electricity used for a specific end use, in this case EV charging [8]. The traceability, in a context of increasingly sustainability [9], [10] and smartness city, is an important develop tool because only in this way it is possible to quantify the real emissions produced by EVs and to ensure the real foresight of grid load. This paper wants investigate the real ways to introduce this kind of real energy accounting, through the traceability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Enrico Fabrizio; Maria Ferrara; Elisa Sirombo; Marco Filippi; Alberto Monti;Abstract The international efforts for improving energy efficiency in buildings and reducing their environmental impact also constitute a challenge for working against the risk of energy poverty. The work aims to test a methodology for optimizing the operational costs of the different flats of a multi-family building for social housing. The method combines the use of TRNSYS building energy simulation program with GenOpt Generic Optimization program in a so-called simulation-based optimization method. A typical floor of a real case study building was modeled and the energy costs for heating and cooling due to the variation of design variables related to the building envelope was studied. The optimization led to reduce the total operational costs of the flats by the range 17%-23%. The different share of heating, cooling, ventilation and DHW in the total operational costs was studied and resulted differences in energy rating and costs between flats were analyzed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | FLEXI BURN CFBEC| FLEXI BURN CFBArto Hotta; Reijo Kuivalainen; Monica Lupion; Iñaki Alvarez; Pedro Otero; Jouni Lantto; Horst Hack;AbstractGlobal primary energy demand is growing, and is likely to continue growing during the next years. Energy projections made by the World Energy Council, the International Energy Agency (IEA) and the US Energy Information Administration give similar pictures of future energy requirements, mainly supplied by fossil fuels. Although it is expected that the share of the fossil fuels in the energy mix will decline in the future, the dominant role of fossil fuels will remain for decades to come, which entails large emissions of CO2 if new policy measures are not endorsed. Carbon Capture and Storage technologies (CCS) have the potential to reduce CO2 emissions into the atmosphere, providing by 2050 up to 20% of the CO2 reduction required to combat climate change.In this context, one of the current European initiatives in terms of R&D&D on Carbon Capture and Storage (CCS) and Clean Coal technologies (CCTs) is the Technology Development Centre for CO2 Capture and Storage, or es.CO2 Centre, which is supported by the Spanish Government through The Fundacion Ciudad de la Energia (CIUDEN). CIUDEN is a research and development institution created by the Spanish Administration in 2006 and fully conceived for collaborative technology development on CCS and CCTs. The es.CO2 Centre incorporates the world's most advanced equipment for the development of capture processes through oxycombustion based on two combustion technologies: Pulverized Coal (PC) and Circulating Fluidized Bed (CFB).Foster Wheeler is the technology provider of the 30 MWth oxy-CFB unit, which achieved first fire on coal in September 2011 and underwent initial oxy-mode commissioning in December 2011. This CFB unit design allows multiple fuels to be tested either under conventional combustion with air or under oxy-fuel conditions (Flexi-Burn® concept), and combines CFB's intrinsic advantages (fuel flexibility and low SOx and NOx emissions) with oxygen- firing for CCS.This paper focuses on initial operational experiences of CIUDEN's 30MWth oxy-CFB facility. During the preliminary tests in spring 2012, and the first test campaign in summer 2012, an extensive amount of operational data were acquired for four fuels and fuel mixtures. Results from first operational experiences are extremely promising. This oxy-CFB installation, which is the first of its class, will provide a real basis for the design and operation of flexible and competitive oxycombustion facilities at demonstration scale. Results achieved here aim to validate the design of a future 330 MWe supercritical Oxycombustion Power Station (OXY-CFB-300 Compostilla Project) intended to demonstrate CCS technology in commercial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Shanyu Zhao; Samuel Brunner; Stefano Aliprandi; R. Galliano; Gabriele Masera; Thomas Stahl;AbstractAlthough the application of internal insulation to existing perimeter walls poses significant challenges in terms of building physics and loss of habitable space, it is sometimes an inevitable choice because of practical or legislative constraints. Innovative solutions are then required to deliver satisfying performances and reduce nuisance to inhabitants of residential buildings in case they are going to remain in their flats during the retrofit works.Three systems for inner thermal retrofitting purposes have been designed and produced as prototypes. Two of them are composed by silica aerogel containing fibrous material: the first one is a rigid flat laminated panel, the second one is a rollable solution with a fabric finishing layer. The third insulating system is a perlite based board with a hydrophobic layer. All the materials composing the retrofit solutions have been characterized by means of laboratory tests in order to measure their main hygrothermal properties. In fact, some parameters are fundamental for determining the hygrothermal performance of the composite systems: thermal conductivity, at dry and wet state (moisture dependant), water vapour diffusion resistance factor, hygroscopic sorption at isotherm condition and water absorption coefficient. All those measured data were necessary for optimizing the solutions, guaranteeing energy efficiency and vapour open layers to systems that are intended for installation on existing walls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Natale Arcuri; Marilena De Simone; Cristina Carpino;Abstract European and Italian standards establish high levels of energy performance of buildings that have to be designed considering their energy balance near zero. To achieve this goal, the reduction of energy demand, attainable by improving energy efficiency of the construction, and the use of renewable energy available both on site and off site are effective solutions to be applied. In particular, in buildings that use energy produced from renewable sources, due to their unstable and unpredictable nature, having the right strategy to compensate the variations is essential. A technical solution reevaluated as a consequence of passive design principles, is to provide an adequate thermal inertia in order to store energy when it is offered and to use it when the source is not available. In these cases, the ability of construction elements to retain heat becomes fundamental as they contribute to maintain internal comfort conditions. This paper aims to investigate how various types of heating and cooling systems, based on different modes of heat transfer, are able to interact differently with the thermal mass of the building, producing a different level of its activation. The investigation considers a case study used to carry out dynamic simulation by means of DesignBuilder which is a user interface of EnergyPlus. The model consists of a building with elementary geometry and a single thermal zone, delimited by walls with outside thermal insulation and a heat accumulation layer inside. The variation of the internal temperature by using different types of conditioning system is analyzed in order to individuate the technology that takes the greatest advantages from the thermal mass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV E. Valentini; A. De Pascale; F. Lussu; Lisa Branchini; P. Cagnoli; V. Orlandini;AbstractIn the last years, the number of installed biofuels power plants is increased in northern Italy, due to favorable legislation on renewable energy sources, posing the issue to assess the resulting environmental effects. The European legislation on emissions for renewable fuels power plants provides guidelines to be integrated in the local regulations; moreover, local authorities have to identify the critical power plants in terms of pollution and the key parameters to grant licenses for the future plants.The aim of this paper is to describe a methodology and the calculation routine developed to assess the environmental effects of biomass plants in terms of simple indexes. The used approach is based on the Cross-Media Effects described by a European Commission Reference Document. In particular, several indexes are introduced to cover the most relevant environmental effects, as: air toxicity, global warming, acidification, eutrophication and photochemical ozone creation. For every considered pollutant (such as NOx, CO, etc.) directly emitted by the power plant, specific factors have been identified, in order to calculate the contribution to the different environmental indexes. Finally, a numerical evaluation of different biomass power plants, installed in Emilia Romagna region, is provided, in order to assess their environmental cross-media potential and to compare such kind of power plants with large scale, fossil-fuelled power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ferdinando Salata; Andrea de Lieto Vollaro; Roberto De Lieto Vollaro;AbstractRecently, great attention has been given to the transition from centralized to distributed generation energy production systems. There is a growing potential regarding the use of trigeneration systems in the residential sector because they have the ability to produce thermal energy and electricity from a single source of fuel.This study has the goal to determine the best systems able to satisfy the demand for electricity and thermal energy for a complex of historic buildings in Rome. Such analysis has been conducted using a specific tool conceived for energetic and financial analysis: the RETScreen software.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 BelgiumPublisher:Elsevier BV Funded by:EC | ECO-LIFEEC| ECO-LIFEAuthors: Himpe, Eline; Van de Putte, Stijn; Laverge, Jelle; Janssens, Arnold;AbstractThe first year commissioning activities in 4 multi-family buildings from a zero-carbon neighbourhood is presented, with focus on the operation of the ventilation systems, the indoor climate and user acceptance. The key parameters to detect the main system failures are identified and the effect of the detected defects and failures on the energy performance of the dwellings is explored using dynamic simulations and monitoring data. It is concluded that commissioning of the building systems during occupancy is a vital part of the operational lifetime of a building project in order to achieve the high building performance targets in reality.
Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017Publisher:Elsevier BV Funded by:EC | SMART GEMSEC| SMART GEMSMarina Laskari; Francesco Carducci; Daniela Isidori; Martina Senzacqua; Laura Standardi; Cristina Cristalli;Abstract Thermostatically controlled loads in commercial buildings are usually ruled by set points indicated by well-established international standards like EN 15251. These thresholds set the acceptable comfort ranges based on several parameters such as activity level, climatic conditions and building orientation. However, there are so many aspects which can affect the occupant perception of comfort ranging from physical and mental aspects to cultural aspects while only few of them are clearly measurable. This paper presents a methodology for the simultaneous subjective and objective evaluation of thermal comfort in commercial buildings. The methodology is based on the intermediate protocol level for the evaluation of thermal comfort as suggested by ASHRAE’s Performance Measurement Protocols for Commercial Buildings. It is applied in the office spaces of the Loccioni Leaf Lab, located in the province of Ancona, Italy, during the summer period. The study is utilized for the identification of serious thermal comfort issues but also for the determination of the preferred comfort conditions in the Leaf Lab office spaces.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 35visibility views 35 download downloads 54 Powered bymore_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Authors: Mutani, Guglielmina; Todeschi, Valeria;Today 54 % of the world's population resides in urban areas and in 2050 the projections are for 66 %. Therefore, the issue of city sustainability becomes increasingly important. This paper analyzes city energy sustainability with consideration to the complex built environment, high population densities, anthropogenic activities, energy demands, environmental impacts, as well as limits on both space availability and renewable energy sources. The evaluation considers models of thermal energy consumption for both residential and non-residential buildings based on a GIS tool. The thermal energy-use models consider established statistical methods as well as the introduction of energy-dependent urban-scale variables.
Energy Procedia arrow_drop_down Publications Open Repository TOrinoConference object . 2017Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Publications Open Repository TOrinoConference object . 2017Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | PLANGRIDEVEC| PLANGRIDEVAuthors: A. Santiangeli; F. Zuccari; Fabio Orecchini; Alessandro Dell’Era;AbstractThe energy sustainability, in the era of sources diversification [1], can be guaranteed by an energy resources utilization most correct, foreseeing no predominance of one source over the others in any area of the world but a proper energy mix, based on locally available resources and needs [2]-[4]. In this scenario, manageable with a smart grid system [5], [6], a virtuous use of RES must be visible, recognizable and quantifiable, in one word traceable [7]. The innovation of the traceability concept consists in the possibility of having information concerning the exact origin of the electricity used for a specific end use, in this case EV charging [8]. The traceability, in a context of increasingly sustainability [9], [10] and smartness city, is an important develop tool because only in this way it is possible to quantify the real emissions produced by EVs and to ensure the real foresight of grid load. This paper wants investigate the real ways to introduce this kind of real energy accounting, through the traceability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Enrico Fabrizio; Maria Ferrara; Elisa Sirombo; Marco Filippi; Alberto Monti;Abstract The international efforts for improving energy efficiency in buildings and reducing their environmental impact also constitute a challenge for working against the risk of energy poverty. The work aims to test a methodology for optimizing the operational costs of the different flats of a multi-family building for social housing. The method combines the use of TRNSYS building energy simulation program with GenOpt Generic Optimization program in a so-called simulation-based optimization method. A typical floor of a real case study building was modeled and the energy costs for heating and cooling due to the variation of design variables related to the building envelope was studied. The optimization led to reduce the total operational costs of the flats by the range 17%-23%. The different share of heating, cooling, ventilation and DHW in the total operational costs was studied and resulted differences in energy rating and costs between flats were analyzed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | FLEXI BURN CFBEC| FLEXI BURN CFBArto Hotta; Reijo Kuivalainen; Monica Lupion; Iñaki Alvarez; Pedro Otero; Jouni Lantto; Horst Hack;AbstractGlobal primary energy demand is growing, and is likely to continue growing during the next years. Energy projections made by the World Energy Council, the International Energy Agency (IEA) and the US Energy Information Administration give similar pictures of future energy requirements, mainly supplied by fossil fuels. Although it is expected that the share of the fossil fuels in the energy mix will decline in the future, the dominant role of fossil fuels will remain for decades to come, which entails large emissions of CO2 if new policy measures are not endorsed. Carbon Capture and Storage technologies (CCS) have the potential to reduce CO2 emissions into the atmosphere, providing by 2050 up to 20% of the CO2 reduction required to combat climate change.In this context, one of the current European initiatives in terms of R&D&D on Carbon Capture and Storage (CCS) and Clean Coal technologies (CCTs) is the Technology Development Centre for CO2 Capture and Storage, or es.CO2 Centre, which is supported by the Spanish Government through The Fundacion Ciudad de la Energia (CIUDEN). CIUDEN is a research and development institution created by the Spanish Administration in 2006 and fully conceived for collaborative technology development on CCS and CCTs. The es.CO2 Centre incorporates the world's most advanced equipment for the development of capture processes through oxycombustion based on two combustion technologies: Pulverized Coal (PC) and Circulating Fluidized Bed (CFB).Foster Wheeler is the technology provider of the 30 MWth oxy-CFB unit, which achieved first fire on coal in September 2011 and underwent initial oxy-mode commissioning in December 2011. This CFB unit design allows multiple fuels to be tested either under conventional combustion with air or under oxy-fuel conditions (Flexi-Burn® concept), and combines CFB's intrinsic advantages (fuel flexibility and low SOx and NOx emissions) with oxygen- firing for CCS.This paper focuses on initial operational experiences of CIUDEN's 30MWth oxy-CFB facility. During the preliminary tests in spring 2012, and the first test campaign in summer 2012, an extensive amount of operational data were acquired for four fuels and fuel mixtures. Results from first operational experiences are extremely promising. This oxy-CFB installation, which is the first of its class, will provide a real basis for the design and operation of flexible and competitive oxycombustion facilities at demonstration scale. Results achieved here aim to validate the design of a future 330 MWe supercritical Oxycombustion Power Station (OXY-CFB-300 Compostilla Project) intended to demonstrate CCS technology in commercial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu