- home
- Search
- Energy Research
- IT
- GB
- PK
- Energy Procedia
- Energy Research
- IT
- GB
- PK
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Garwood, Tom Lloyd; Hughes, Ben Richard; O'Connor, Dominic; Calautit, John K; Oates, Michael R; Hodgson, Thomas;The industrial sector accounts for 17% of end-use energy in the UK, and 54% globally. Therefore, there is substantial scope for simulating and assessing potential energy retrofit options for industrial buildings. Building Energy Modelling (BEM) applied to industrial buildings poses a complex but important opportunity for reducing global energy demand, due to years of renovation and expansion. Large and complex industrial buildings make modelling existing geometry for BEM difficult and time consuming. This paper presents a potential solution for quickly capturing and processing as-built geometry of a factory to be utilized in BEM. Laser scans were captured from the interior of an industrial facility to produce a Point Cloud. The existing capabilities of a Point Cloud processing software were assessed to identify the potential development opportunities to automate the conversion of Point Clouds to building geometry for BEM applications. In conclusion, scope exists for increasing the speed of 3D geometry creation of an existing industrial building for application in BEM and subsequent thermal simulation.
CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Garwood, Tom Lloyd; Hughes, Ben Richard; O'Connor, Dominic; Calautit, John K; Oates, Michael R; Hodgson, Thomas;The industrial sector accounts for 17% of end-use energy in the UK, and 54% globally. Therefore, there is substantial scope for simulating and assessing potential energy retrofit options for industrial buildings. Building Energy Modelling (BEM) applied to industrial buildings poses a complex but important opportunity for reducing global energy demand, due to years of renovation and expansion. Large and complex industrial buildings make modelling existing geometry for BEM difficult and time consuming. This paper presents a potential solution for quickly capturing and processing as-built geometry of a factory to be utilized in BEM. Laser scans were captured from the interior of an industrial facility to produce a Point Cloud. The existing capabilities of a Point Cloud processing software were assessed to identify the potential development opportunities to automate the conversion of Point Clouds to building geometry for BEM applications. In conclusion, scope exists for increasing the speed of 3D geometry creation of an existing industrial building for application in BEM and subsequent thermal simulation.
CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | CryoHubEC| CryoHubAuthors: Murrant, Daniel; Radcliffe, Jonathan;Abstract The need to increase energy system flexibility, alongside the need to lower fossil fuel use in the food sector, and the importance of refrigeration infrastructure presents an opportunity for Liquid Air Energy Storage (LAES) integrated with refrigerated warehouses. To quantify this opportunity in Europe we analyse energy scenarios and existing refrigeration infrastructure for four countries with diverse energy systems (UK, Spain, Bulgaria and Germany). We find that with growing levels of electricity generation from variable renewable sources and numerous refrigerated warehouses, LAES has the potential to provide value in many areas of the EU through the 2020s. However, LAES is still pre-commercial, and with the proportion of electricity from variable renewable sources still low in many countries it is likely that LAES will not be deployed widely alongside refrigerated warehouses under current market conditions. Countries such as the UK and Spain, which have the greatest need for additional energy system flexibility and the most refrigerated warehouses are likely to gain the most value initially.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | CryoHubEC| CryoHubAuthors: Murrant, Daniel; Radcliffe, Jonathan;Abstract The need to increase energy system flexibility, alongside the need to lower fossil fuel use in the food sector, and the importance of refrigeration infrastructure presents an opportunity for Liquid Air Energy Storage (LAES) integrated with refrigerated warehouses. To quantify this opportunity in Europe we analyse energy scenarios and existing refrigeration infrastructure for four countries with diverse energy systems (UK, Spain, Bulgaria and Germany). We find that with growing levels of electricity generation from variable renewable sources and numerous refrigerated warehouses, LAES has the potential to provide value in many areas of the EU through the 2020s. However, LAES is still pre-commercial, and with the proportion of electricity from variable renewable sources still low in many countries it is likely that LAES will not be deployed widely alongside refrigerated warehouses under current market conditions. Countries such as the UK and Spain, which have the greatest need for additional energy system flexibility and the most refrigerated warehouses are likely to gain the most value initially.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Bianchi, M.; Branchini, L.; Pascale, A. De; Melino, F.; Ottaviano, S.; Peretto, A.; TORRICELLI, NOEMI; Zampieri, G.;handle: 11585/664347
Abstract In the electricity production sector, geothermal energy is considered a reliable energy source because of its independence of seasonal, climatic and geographical conditions. Low-temperature geothermal wells present a huge potential of exploitation, as the development of binary cycles and the technological improvement in drilling make this heat source a competitive solution for electricity generated distribution and self-consumption. The Organic Rankine Cycle (ORC) is currently the best solution to convert heat into electricity using low enthalpy heat sources. The ORC technology is already mature and widespread for medium and large-scale power plants, applying for geothermal, solar, biomass or waste heat recovery exploitation. Micro-scale ORC applications are still not diffused in the market: the system layout, the working fluid selection and the expander architecture can significantly vary depending on the specific realization requirements, thus a standard configuration has not established yet. In this paper, a particular case study of a micro-ORC power system using a geothermal well is presented. The application in analysis is a plug-and-play ORC facility, currently installed and operating in a pool centre. The system layout and the main components are described. The heat source is a geothermal well, which continuously supplies (by pressure difference) liquid water at a temperature lower than 60 °C to a binary Rankine cycle working with R134a. The ORC system is driven by a prototypal radial-piston expander and adopts an external-gear feed pump and a recuperative cycle. It is developed for working continuously, delivering the generated electricity directly into the grid. The facility is provided with temperature, pressure and electric power sensors for monitoring the operation and for a preliminary evaluation of the performance. The global efficiency of expander and feed pump and the ORC net efficiency have been evaluated at the regular working conditions of the geothermal well, showing values equal to, respectively, 53 %, 41 % and 4.4 %.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Bianchi, M.; Branchini, L.; Pascale, A. De; Melino, F.; Ottaviano, S.; Peretto, A.; TORRICELLI, NOEMI; Zampieri, G.;handle: 11585/664347
Abstract In the electricity production sector, geothermal energy is considered a reliable energy source because of its independence of seasonal, climatic and geographical conditions. Low-temperature geothermal wells present a huge potential of exploitation, as the development of binary cycles and the technological improvement in drilling make this heat source a competitive solution for electricity generated distribution and self-consumption. The Organic Rankine Cycle (ORC) is currently the best solution to convert heat into electricity using low enthalpy heat sources. The ORC technology is already mature and widespread for medium and large-scale power plants, applying for geothermal, solar, biomass or waste heat recovery exploitation. Micro-scale ORC applications are still not diffused in the market: the system layout, the working fluid selection and the expander architecture can significantly vary depending on the specific realization requirements, thus a standard configuration has not established yet. In this paper, a particular case study of a micro-ORC power system using a geothermal well is presented. The application in analysis is a plug-and-play ORC facility, currently installed and operating in a pool centre. The system layout and the main components are described. The heat source is a geothermal well, which continuously supplies (by pressure difference) liquid water at a temperature lower than 60 °C to a binary Rankine cycle working with R134a. The ORC system is driven by a prototypal radial-piston expander and adopts an external-gear feed pump and a recuperative cycle. It is developed for working continuously, delivering the generated electricity directly into the grid. The facility is provided with temperature, pressure and electric power sensors for monitoring the operation and for a preliminary evaluation of the performance. The global efficiency of expander and feed pump and the ORC net efficiency have been evaluated at the regular working conditions of the geothermal well, showing values equal to, respectively, 53 %, 41 % and 4.4 %.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV CARBONARO, CORRADO; TEDESCO, SILVIA; THIEBAT, FRANCESCA; FANTUCCI, STEFANO; SERRA, VALENTINA; Dutto, Marco;handle: 11583/2628994
AbstractThe use of thermal insulating plasters represents an effective solution in energy retrofit of existing buildings. Thermal properties are usually improved through the addition on the plaster formulation of Light Weight Aggregates, as expanded polystyrene and perlite. The drawback of these thermal plasters is the higher environmental impact, especially when added to natural binders, as natural hydraulic lime.Within a research activity a process of optimization was followed in order to get the most effective blend, applying iteratively the LCA methodology, measuring the thermal conductivity and testing the environmental impact in terms of Volatile Organic Compounds and formaldehyde emission rates.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV CARBONARO, CORRADO; TEDESCO, SILVIA; THIEBAT, FRANCESCA; FANTUCCI, STEFANO; SERRA, VALENTINA; Dutto, Marco;handle: 11583/2628994
AbstractThe use of thermal insulating plasters represents an effective solution in energy retrofit of existing buildings. Thermal properties are usually improved through the addition on the plaster formulation of Light Weight Aggregates, as expanded polystyrene and perlite. The drawback of these thermal plasters is the higher environmental impact, especially when added to natural binders, as natural hydraulic lime.Within a research activity a process of optimization was followed in order to get the most effective blend, applying iteratively the LCA methodology, measuring the thermal conductivity and testing the environmental impact in terms of Volatile Organic Compounds and formaldehyde emission rates.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Bruno R; ARCURI, Natale; Carpino C.;handle: 20.500.11770/145116
AbstractA parametric analysis for an innovative prototype of passive building, located in south Italy and for residential use, has been conducted to evaluate the thermal energy requirements for heating and cooling applications. The investigation was addressed by considering also the aspect of sustainability, by employing natural materials such as dry sand and wood fibre, and the correspondent effects on the energy performances of the envelope. These materials are usually available on site; they increase the building thermal capacity, which represents a crucial aspect for hot climates, and finally could even be reused after building disposal. The construction system based on the completely dry assembling technique makes the exploitation of the mentioned materials possible. The results of the parametric study were obtained by means of the Design Builder dynamic software, by investigating the glazed surfaces, the control of solar radiation and the exploitation of nocturnal free-cooling. A parametric study allowed for optimization of the envelope, by respecting the limit values of 15 kWh/m2 suggested by the standard passivhaus in its extended formulation for warm climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Bruno R; ARCURI, Natale; Carpino C.;handle: 20.500.11770/145116
AbstractA parametric analysis for an innovative prototype of passive building, located in south Italy and for residential use, has been conducted to evaluate the thermal energy requirements for heating and cooling applications. The investigation was addressed by considering also the aspect of sustainability, by employing natural materials such as dry sand and wood fibre, and the correspondent effects on the energy performances of the envelope. These materials are usually available on site; they increase the building thermal capacity, which represents a crucial aspect for hot climates, and finally could even be reused after building disposal. The construction system based on the completely dry assembling technique makes the exploitation of the mentioned materials possible. The results of the parametric study were obtained by means of the Design Builder dynamic software, by investigating the glazed surfaces, the control of solar radiation and the exploitation of nocturnal free-cooling. A parametric study allowed for optimization of the envelope, by respecting the limit values of 15 kWh/m2 suggested by the standard passivhaus in its extended formulation for warm climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2019 United KingdomPublisher:Elsevier BV Funded by:EC | I-ThERMEC| I-ThERMAuthors: Chai, Lei; Tassou, Savvas A;Abstract Carbon dioxide (CO2) is becoming an important commercial and industrial working fluid as a potential replacement of the non-environmental friendly refrigerants. For refrigeration and power systems, the minichannel heat exchangers are becoming attractive for transcritical CO2 Rankine cycle and supercritical CO2 Brayton cycle, due to their highly compact construction, high heat transfer coefficient, high pressure capability and lower fluid inventory. This paper employs three-dimensional numerical models to investigate the heat transfer and pressure drop characteristics of supercritical CO2 in minichannels. The models consider real gas thermophysical properties and buoyancy effect and investigate the effect of cross-section geometry on the thermohydraulic characteristics. Six minichannel cross-section geometries with the same hydraulic diameter of 1.22 mm are considered. The geometries include circle, semicircle, square, equilateral triangle, rectangle (aspect ratio = 2) and ellipse (aspect ratio = 2). The inlet temperature, outlet pressure and wall heat flux are 35 °C/75 bar/100 kW/m2 and 35 °C/150 bar/300 kW/m2 for heating conditions and 120 °C/75 bar/-100 kW/m2 and 120 °C/150 bar/-300 kW/m2 for cooling conditions. Comparisons of local Nusselt number and friction factor with those employed empirical correlations are made and useful information and guidelines are provided for the design of compact heat exchangers for supercritical CO2 power system applications.
Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2019 United KingdomPublisher:Elsevier BV Funded by:EC | I-ThERMEC| I-ThERMAuthors: Chai, Lei; Tassou, Savvas A;Abstract Carbon dioxide (CO2) is becoming an important commercial and industrial working fluid as a potential replacement of the non-environmental friendly refrigerants. For refrigeration and power systems, the minichannel heat exchangers are becoming attractive for transcritical CO2 Rankine cycle and supercritical CO2 Brayton cycle, due to their highly compact construction, high heat transfer coefficient, high pressure capability and lower fluid inventory. This paper employs three-dimensional numerical models to investigate the heat transfer and pressure drop characteristics of supercritical CO2 in minichannels. The models consider real gas thermophysical properties and buoyancy effect and investigate the effect of cross-section geometry on the thermohydraulic characteristics. Six minichannel cross-section geometries with the same hydraulic diameter of 1.22 mm are considered. The geometries include circle, semicircle, square, equilateral triangle, rectangle (aspect ratio = 2) and ellipse (aspect ratio = 2). The inlet temperature, outlet pressure and wall heat flux are 35 °C/75 bar/100 kW/m2 and 35 °C/150 bar/300 kW/m2 for heating conditions and 120 °C/75 bar/-100 kW/m2 and 120 °C/150 bar/-300 kW/m2 for cooling conditions. Comparisons of local Nusselt number and friction factor with those employed empirical correlations are made and useful information and guidelines are provided for the design of compact heat exchangers for supercritical CO2 power system applications.
Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Alessia Pedace; Alessia Pedace; Laura Bellia; Francesca Fragliasso; Gennaro Spada;handle: 11588/635980
AbstractThe current standard for lighting of indoor work places (EN 12464-1) essentially prescribes values of photometric quantities (illuminance, Unified Glare Index, etc.); therefore it does not allow a comprehensive analysis of the luminous environment. In Italy, educational buildings do not always comply with the standard requirements for lighting. Therefore an analysis of their current state is needed and this paper illustrates two methods, developed by the authors, to carry out this investigation: the former is based on the analysis of luminance maps obtained through the HDR imaging technique whereas the latter focuses on the evaluation of non-visual effects of light.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 6 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Alessia Pedace; Alessia Pedace; Laura Bellia; Francesca Fragliasso; Gennaro Spada;handle: 11588/635980
AbstractThe current standard for lighting of indoor work places (EN 12464-1) essentially prescribes values of photometric quantities (illuminance, Unified Glare Index, etc.); therefore it does not allow a comprehensive analysis of the luminous environment. In Italy, educational buildings do not always comply with the standard requirements for lighting. Therefore an analysis of their current state is needed and this paper illustrates two methods, developed by the authors, to carry out this investigation: the former is based on the analysis of luminance maps obtained through the HDR imaging technique whereas the latter focuses on the evaluation of non-visual effects of light.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 6 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 Norway, Italy, ItalyPublisher:Elsevier BV Authors: BIANCO, LORENZA; Goia, Francesco; SERRA, VALENTINA; Zinzi, Michele;handle: 11250/2479584 , 11583/2627283 , 20.500.12079/5990
AbstractSwitchable windows are glazing technologies that exhibit dynamic optical properties and may thus be used to improve the energy performance of buildings. A window system based on a thermotropic glass pane was tested both in the laboratory and by means of an outdoor test cell facility.In this paper the full optical and thermal characterization of this glazing technology is presented. Experiments and data analysis led to the characterization of the behaviour of the thermotropic glazing both when this technology is used alone (single glass pane) and when it is integrated in a multilayer fenestration (a triple glazed unit).
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 Norway, Italy, ItalyPublisher:Elsevier BV Authors: BIANCO, LORENZA; Goia, Francesco; SERRA, VALENTINA; Zinzi, Michele;handle: 11250/2479584 , 11583/2627283 , 20.500.12079/5990
AbstractSwitchable windows are glazing technologies that exhibit dynamic optical properties and may thus be used to improve the energy performance of buildings. A window system based on a thermotropic glass pane was tested both in the laboratory and by means of an outdoor test cell facility.In this paper the full optical and thermal characterization of this glazing technology is presented. Experiments and data analysis led to the characterization of the behaviour of the thermotropic glazing both when this technology is used alone (single glass pane) and when it is integrated in a multilayer fenestration (a triple glazed unit).
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Ali Cheshmehzangi; Ayotunde Dawodu;Passive cooling energy systems are significantly important in achieving efficient design and performative built environment. Encouragingly, there are many passive cooling energy systems at three spatial levels of macro, meso and micro. In this research study, these energy systems are identified and are assessed in a SWOT analysis evaluation. Apart from social and economic implications that are broad and effective for most of passive cooling energy systems, this study focuses on the energy systems’ implications across five indicators of practice, health, environment, energy and policy, which are significant for disciplines of sustainable energy systems and the built environment. This study aims to evaluate the interdependency of each indicator across three spatial levels and then argue for methods that can be considered for potential implementation of passive cooling energy systems. Furthermore, this study offers a holistic overview of all available passive cooling energy systems and argue based on interplay between five indicators across the three studied spatial levels. This study focuses on warmer climate zones (e.g. hot and dry; hot and humid), where passive cooling is expected to me more effective and obligatory. As a result, this study aims to help energy specialists, policy makers, planners and designers to evaluate how they can utilize passive cooling energy systems based on the key studied indicators. Finally, this paper gives an overview of gaps in policy and practice implementation of such systems in practice and their effectiveness at various spatial levels of the built environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Ali Cheshmehzangi; Ayotunde Dawodu;Passive cooling energy systems are significantly important in achieving efficient design and performative built environment. Encouragingly, there are many passive cooling energy systems at three spatial levels of macro, meso and micro. In this research study, these energy systems are identified and are assessed in a SWOT analysis evaluation. Apart from social and economic implications that are broad and effective for most of passive cooling energy systems, this study focuses on the energy systems’ implications across five indicators of practice, health, environment, energy and policy, which are significant for disciplines of sustainable energy systems and the built environment. This study aims to evaluate the interdependency of each indicator across three spatial levels and then argue for methods that can be considered for potential implementation of passive cooling energy systems. Furthermore, this study offers a holistic overview of all available passive cooling energy systems and argue based on interplay between five indicators across the three studied spatial levels. This study focuses on warmer climate zones (e.g. hot and dry; hot and humid), where passive cooling is expected to me more effective and obligatory. As a result, this study aims to help energy specialists, policy makers, planners and designers to evaluate how they can utilize passive cooling energy systems based on the key studied indicators. Finally, this paper gives an overview of gaps in policy and practice implementation of such systems in practice and their effectiveness at various spatial levels of the built environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Garwood, Tom Lloyd; Hughes, Ben Richard; O'Connor, Dominic; Calautit, John K; Oates, Michael R; Hodgson, Thomas;The industrial sector accounts for 17% of end-use energy in the UK, and 54% globally. Therefore, there is substantial scope for simulating and assessing potential energy retrofit options for industrial buildings. Building Energy Modelling (BEM) applied to industrial buildings poses a complex but important opportunity for reducing global energy demand, due to years of renovation and expansion. Large and complex industrial buildings make modelling existing geometry for BEM difficult and time consuming. This paper presents a potential solution for quickly capturing and processing as-built geometry of a factory to be utilized in BEM. Laser scans were captured from the interior of an industrial facility to produce a Point Cloud. The existing capabilities of a Point Cloud processing software were assessed to identify the potential development opportunities to automate the conversion of Point Clouds to building geometry for BEM applications. In conclusion, scope exists for increasing the speed of 3D geometry creation of an existing industrial building for application in BEM and subsequent thermal simulation.
CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Garwood, Tom Lloyd; Hughes, Ben Richard; O'Connor, Dominic; Calautit, John K; Oates, Michael R; Hodgson, Thomas;The industrial sector accounts for 17% of end-use energy in the UK, and 54% globally. Therefore, there is substantial scope for simulating and assessing potential energy retrofit options for industrial buildings. Building Energy Modelling (BEM) applied to industrial buildings poses a complex but important opportunity for reducing global energy demand, due to years of renovation and expansion. Large and complex industrial buildings make modelling existing geometry for BEM difficult and time consuming. This paper presents a potential solution for quickly capturing and processing as-built geometry of a factory to be utilized in BEM. Laser scans were captured from the interior of an industrial facility to produce a Point Cloud. The existing capabilities of a Point Cloud processing software were assessed to identify the potential development opportunities to automate the conversion of Point Clouds to building geometry for BEM applications. In conclusion, scope exists for increasing the speed of 3D geometry creation of an existing industrial building for application in BEM and subsequent thermal simulation.
CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | CryoHubEC| CryoHubAuthors: Murrant, Daniel; Radcliffe, Jonathan;Abstract The need to increase energy system flexibility, alongside the need to lower fossil fuel use in the food sector, and the importance of refrigeration infrastructure presents an opportunity for Liquid Air Energy Storage (LAES) integrated with refrigerated warehouses. To quantify this opportunity in Europe we analyse energy scenarios and existing refrigeration infrastructure for four countries with diverse energy systems (UK, Spain, Bulgaria and Germany). We find that with growing levels of electricity generation from variable renewable sources and numerous refrigerated warehouses, LAES has the potential to provide value in many areas of the EU through the 2020s. However, LAES is still pre-commercial, and with the proportion of electricity from variable renewable sources still low in many countries it is likely that LAES will not be deployed widely alongside refrigerated warehouses under current market conditions. Countries such as the UK and Spain, which have the greatest need for additional energy system flexibility and the most refrigerated warehouses are likely to gain the most value initially.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | CryoHubEC| CryoHubAuthors: Murrant, Daniel; Radcliffe, Jonathan;Abstract The need to increase energy system flexibility, alongside the need to lower fossil fuel use in the food sector, and the importance of refrigeration infrastructure presents an opportunity for Liquid Air Energy Storage (LAES) integrated with refrigerated warehouses. To quantify this opportunity in Europe we analyse energy scenarios and existing refrigeration infrastructure for four countries with diverse energy systems (UK, Spain, Bulgaria and Germany). We find that with growing levels of electricity generation from variable renewable sources and numerous refrigerated warehouses, LAES has the potential to provide value in many areas of the EU through the 2020s. However, LAES is still pre-commercial, and with the proportion of electricity from variable renewable sources still low in many countries it is likely that LAES will not be deployed widely alongside refrigerated warehouses under current market conditions. Countries such as the UK and Spain, which have the greatest need for additional energy system flexibility and the most refrigerated warehouses are likely to gain the most value initially.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Bianchi, M.; Branchini, L.; Pascale, A. De; Melino, F.; Ottaviano, S.; Peretto, A.; TORRICELLI, NOEMI; Zampieri, G.;handle: 11585/664347
Abstract In the electricity production sector, geothermal energy is considered a reliable energy source because of its independence of seasonal, climatic and geographical conditions. Low-temperature geothermal wells present a huge potential of exploitation, as the development of binary cycles and the technological improvement in drilling make this heat source a competitive solution for electricity generated distribution and self-consumption. The Organic Rankine Cycle (ORC) is currently the best solution to convert heat into electricity using low enthalpy heat sources. The ORC technology is already mature and widespread for medium and large-scale power plants, applying for geothermal, solar, biomass or waste heat recovery exploitation. Micro-scale ORC applications are still not diffused in the market: the system layout, the working fluid selection and the expander architecture can significantly vary depending on the specific realization requirements, thus a standard configuration has not established yet. In this paper, a particular case study of a micro-ORC power system using a geothermal well is presented. The application in analysis is a plug-and-play ORC facility, currently installed and operating in a pool centre. The system layout and the main components are described. The heat source is a geothermal well, which continuously supplies (by pressure difference) liquid water at a temperature lower than 60 °C to a binary Rankine cycle working with R134a. The ORC system is driven by a prototypal radial-piston expander and adopts an external-gear feed pump and a recuperative cycle. It is developed for working continuously, delivering the generated electricity directly into the grid. The facility is provided with temperature, pressure and electric power sensors for monitoring the operation and for a preliminary evaluation of the performance. The global efficiency of expander and feed pump and the ORC net efficiency have been evaluated at the regular working conditions of the geothermal well, showing values equal to, respectively, 53 %, 41 % and 4.4 %.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Bianchi, M.; Branchini, L.; Pascale, A. De; Melino, F.; Ottaviano, S.; Peretto, A.; TORRICELLI, NOEMI; Zampieri, G.;handle: 11585/664347
Abstract In the electricity production sector, geothermal energy is considered a reliable energy source because of its independence of seasonal, climatic and geographical conditions. Low-temperature geothermal wells present a huge potential of exploitation, as the development of binary cycles and the technological improvement in drilling make this heat source a competitive solution for electricity generated distribution and self-consumption. The Organic Rankine Cycle (ORC) is currently the best solution to convert heat into electricity using low enthalpy heat sources. The ORC technology is already mature and widespread for medium and large-scale power plants, applying for geothermal, solar, biomass or waste heat recovery exploitation. Micro-scale ORC applications are still not diffused in the market: the system layout, the working fluid selection and the expander architecture can significantly vary depending on the specific realization requirements, thus a standard configuration has not established yet. In this paper, a particular case study of a micro-ORC power system using a geothermal well is presented. The application in analysis is a plug-and-play ORC facility, currently installed and operating in a pool centre. The system layout and the main components are described. The heat source is a geothermal well, which continuously supplies (by pressure difference) liquid water at a temperature lower than 60 °C to a binary Rankine cycle working with R134a. The ORC system is driven by a prototypal radial-piston expander and adopts an external-gear feed pump and a recuperative cycle. It is developed for working continuously, delivering the generated electricity directly into the grid. The facility is provided with temperature, pressure and electric power sensors for monitoring the operation and for a preliminary evaluation of the performance. The global efficiency of expander and feed pump and the ORC net efficiency have been evaluated at the regular working conditions of the geothermal well, showing values equal to, respectively, 53 %, 41 % and 4.4 %.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV CARBONARO, CORRADO; TEDESCO, SILVIA; THIEBAT, FRANCESCA; FANTUCCI, STEFANO; SERRA, VALENTINA; Dutto, Marco;handle: 11583/2628994
AbstractThe use of thermal insulating plasters represents an effective solution in energy retrofit of existing buildings. Thermal properties are usually improved through the addition on the plaster formulation of Light Weight Aggregates, as expanded polystyrene and perlite. The drawback of these thermal plasters is the higher environmental impact, especially when added to natural binders, as natural hydraulic lime.Within a research activity a process of optimization was followed in order to get the most effective blend, applying iteratively the LCA methodology, measuring the thermal conductivity and testing the environmental impact in terms of Volatile Organic Compounds and formaldehyde emission rates.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV CARBONARO, CORRADO; TEDESCO, SILVIA; THIEBAT, FRANCESCA; FANTUCCI, STEFANO; SERRA, VALENTINA; Dutto, Marco;handle: 11583/2628994
AbstractThe use of thermal insulating plasters represents an effective solution in energy retrofit of existing buildings. Thermal properties are usually improved through the addition on the plaster formulation of Light Weight Aggregates, as expanded polystyrene and perlite. The drawback of these thermal plasters is the higher environmental impact, especially when added to natural binders, as natural hydraulic lime.Within a research activity a process of optimization was followed in order to get the most effective blend, applying iteratively the LCA methodology, measuring the thermal conductivity and testing the environmental impact in terms of Volatile Organic Compounds and formaldehyde emission rates.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Bruno R; ARCURI, Natale; Carpino C.;handle: 20.500.11770/145116
AbstractA parametric analysis for an innovative prototype of passive building, located in south Italy and for residential use, has been conducted to evaluate the thermal energy requirements for heating and cooling applications. The investigation was addressed by considering also the aspect of sustainability, by employing natural materials such as dry sand and wood fibre, and the correspondent effects on the energy performances of the envelope. These materials are usually available on site; they increase the building thermal capacity, which represents a crucial aspect for hot climates, and finally could even be reused after building disposal. The construction system based on the completely dry assembling technique makes the exploitation of the mentioned materials possible. The results of the parametric study were obtained by means of the Design Builder dynamic software, by investigating the glazed surfaces, the control of solar radiation and the exploitation of nocturnal free-cooling. A parametric study allowed for optimization of the envelope, by respecting the limit values of 15 kWh/m2 suggested by the standard passivhaus in its extended formulation for warm climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Bruno R; ARCURI, Natale; Carpino C.;handle: 20.500.11770/145116
AbstractA parametric analysis for an innovative prototype of passive building, located in south Italy and for residential use, has been conducted to evaluate the thermal energy requirements for heating and cooling applications. The investigation was addressed by considering also the aspect of sustainability, by employing natural materials such as dry sand and wood fibre, and the correspondent effects on the energy performances of the envelope. These materials are usually available on site; they increase the building thermal capacity, which represents a crucial aspect for hot climates, and finally could even be reused after building disposal. The construction system based on the completely dry assembling technique makes the exploitation of the mentioned materials possible. The results of the parametric study were obtained by means of the Design Builder dynamic software, by investigating the glazed surfaces, the control of solar radiation and the exploitation of nocturnal free-cooling. A parametric study allowed for optimization of the envelope, by respecting the limit values of 15 kWh/m2 suggested by the standard passivhaus in its extended formulation for warm climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2019 United KingdomPublisher:Elsevier BV Funded by:EC | I-ThERMEC| I-ThERMAuthors: Chai, Lei; Tassou, Savvas A;Abstract Carbon dioxide (CO2) is becoming an important commercial and industrial working fluid as a potential replacement of the non-environmental friendly refrigerants. For refrigeration and power systems, the minichannel heat exchangers are becoming attractive for transcritical CO2 Rankine cycle and supercritical CO2 Brayton cycle, due to their highly compact construction, high heat transfer coefficient, high pressure capability and lower fluid inventory. This paper employs three-dimensional numerical models to investigate the heat transfer and pressure drop characteristics of supercritical CO2 in minichannels. The models consider real gas thermophysical properties and buoyancy effect and investigate the effect of cross-section geometry on the thermohydraulic characteristics. Six minichannel cross-section geometries with the same hydraulic diameter of 1.22 mm are considered. The geometries include circle, semicircle, square, equilateral triangle, rectangle (aspect ratio = 2) and ellipse (aspect ratio = 2). The inlet temperature, outlet pressure and wall heat flux are 35 °C/75 bar/100 kW/m2 and 35 °C/150 bar/300 kW/m2 for heating conditions and 120 °C/75 bar/-100 kW/m2 and 120 °C/150 bar/-300 kW/m2 for cooling conditions. Comparisons of local Nusselt number and friction factor with those employed empirical correlations are made and useful information and guidelines are provided for the design of compact heat exchangers for supercritical CO2 power system applications.
Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2019 United KingdomPublisher:Elsevier BV Funded by:EC | I-ThERMEC| I-ThERMAuthors: Chai, Lei; Tassou, Savvas A;Abstract Carbon dioxide (CO2) is becoming an important commercial and industrial working fluid as a potential replacement of the non-environmental friendly refrigerants. For refrigeration and power systems, the minichannel heat exchangers are becoming attractive for transcritical CO2 Rankine cycle and supercritical CO2 Brayton cycle, due to their highly compact construction, high heat transfer coefficient, high pressure capability and lower fluid inventory. This paper employs three-dimensional numerical models to investigate the heat transfer and pressure drop characteristics of supercritical CO2 in minichannels. The models consider real gas thermophysical properties and buoyancy effect and investigate the effect of cross-section geometry on the thermohydraulic characteristics. Six minichannel cross-section geometries with the same hydraulic diameter of 1.22 mm are considered. The geometries include circle, semicircle, square, equilateral triangle, rectangle (aspect ratio = 2) and ellipse (aspect ratio = 2). The inlet temperature, outlet pressure and wall heat flux are 35 °C/75 bar/100 kW/m2 and 35 °C/150 bar/300 kW/m2 for heating conditions and 120 °C/75 bar/-100 kW/m2 and 120 °C/150 bar/-300 kW/m2 for cooling conditions. Comparisons of local Nusselt number and friction factor with those employed empirical correlations are made and useful information and guidelines are provided for the design of compact heat exchangers for supercritical CO2 power system applications.
Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Brunel University Research ArchiveConference object . 2019Data sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Alessia Pedace; Alessia Pedace; Laura Bellia; Francesca Fragliasso; Gennaro Spada;handle: 11588/635980
AbstractThe current standard for lighting of indoor work places (EN 12464-1) essentially prescribes values of photometric quantities (illuminance, Unified Glare Index, etc.); therefore it does not allow a comprehensive analysis of the luminous environment. In Italy, educational buildings do not always comply with the standard requirements for lighting. Therefore an analysis of their current state is needed and this paper illustrates two methods, developed by the authors, to carry out this investigation: the former is based on the analysis of luminance maps obtained through the HDR imaging technique whereas the latter focuses on the evaluation of non-visual effects of light.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 6 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Alessia Pedace; Alessia Pedace; Laura Bellia; Francesca Fragliasso; Gennaro Spada;handle: 11588/635980
AbstractThe current standard for lighting of indoor work places (EN 12464-1) essentially prescribes values of photometric quantities (illuminance, Unified Glare Index, etc.); therefore it does not allow a comprehensive analysis of the luminous environment. In Italy, educational buildings do not always comply with the standard requirements for lighting. Therefore an analysis of their current state is needed and this paper illustrates two methods, developed by the authors, to carry out this investigation: the former is based on the analysis of luminance maps obtained through the HDR imaging technique whereas the latter focuses on the evaluation of non-visual effects of light.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 6 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 Norway, Italy, ItalyPublisher:Elsevier BV Authors: BIANCO, LORENZA; Goia, Francesco; SERRA, VALENTINA; Zinzi, Michele;handle: 11250/2479584 , 11583/2627283 , 20.500.12079/5990
AbstractSwitchable windows are glazing technologies that exhibit dynamic optical properties and may thus be used to improve the energy performance of buildings. A window system based on a thermotropic glass pane was tested both in the laboratory and by means of an outdoor test cell facility.In this paper the full optical and thermal characterization of this glazing technology is presented. Experiments and data analysis led to the characterization of the behaviour of the thermotropic glazing both when this technology is used alone (single glass pane) and when it is integrated in a multilayer fenestration (a triple glazed unit).
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 Norway, Italy, ItalyPublisher:Elsevier BV Authors: BIANCO, LORENZA; Goia, Francesco; SERRA, VALENTINA; Zinzi, Michele;handle: 11250/2479584 , 11583/2627283 , 20.500.12079/5990
AbstractSwitchable windows are glazing technologies that exhibit dynamic optical properties and may thus be used to improve the energy performance of buildings. A window system based on a thermotropic glass pane was tested both in the laboratory and by means of an outdoor test cell facility.In this paper the full optical and thermal characterization of this glazing technology is presented. Experiments and data analysis led to the characterization of the behaviour of the thermotropic glazing both when this technology is used alone (single glass pane) and when it is integrated in a multilayer fenestration (a triple glazed unit).
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Ali Cheshmehzangi; Ayotunde Dawodu;Passive cooling energy systems are significantly important in achieving efficient design and performative built environment. Encouragingly, there are many passive cooling energy systems at three spatial levels of macro, meso and micro. In this research study, these energy systems are identified and are assessed in a SWOT analysis evaluation. Apart from social and economic implications that are broad and effective for most of passive cooling energy systems, this study focuses on the energy systems’ implications across five indicators of practice, health, environment, energy and policy, which are significant for disciplines of sustainable energy systems and the built environment. This study aims to evaluate the interdependency of each indicator across three spatial levels and then argue for methods that can be considered for potential implementation of passive cooling energy systems. Furthermore, this study offers a holistic overview of all available passive cooling energy systems and argue based on interplay between five indicators across the three studied spatial levels. This study focuses on warmer climate zones (e.g. hot and dry; hot and humid), where passive cooling is expected to me more effective and obligatory. As a result, this study aims to help energy specialists, policy makers, planners and designers to evaluate how they can utilize passive cooling energy systems based on the key studied indicators. Finally, this paper gives an overview of gaps in policy and practice implementation of such systems in practice and their effectiveness at various spatial levels of the built environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Ali Cheshmehzangi; Ayotunde Dawodu;Passive cooling energy systems are significantly important in achieving efficient design and performative built environment. Encouragingly, there are many passive cooling energy systems at three spatial levels of macro, meso and micro. In this research study, these energy systems are identified and are assessed in a SWOT analysis evaluation. Apart from social and economic implications that are broad and effective for most of passive cooling energy systems, this study focuses on the energy systems’ implications across five indicators of practice, health, environment, energy and policy, which are significant for disciplines of sustainable energy systems and the built environment. This study aims to evaluate the interdependency of each indicator across three spatial levels and then argue for methods that can be considered for potential implementation of passive cooling energy systems. Furthermore, this study offers a holistic overview of all available passive cooling energy systems and argue based on interplay between five indicators across the three studied spatial levels. This study focuses on warmer climate zones (e.g. hot and dry; hot and humid), where passive cooling is expected to me more effective and obligatory. As a result, this study aims to help energy specialists, policy makers, planners and designers to evaluate how they can utilize passive cooling energy systems based on the key studied indicators. Finally, this paper gives an overview of gaps in policy and practice implementation of such systems in practice and their effectiveness at various spatial levels of the built environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu