- home
- Search
- Energy Research
- 2021-2025
- GB
- JP
- Applied Energy
- Energy Research
- 2021-2025
- GB
- JP
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of CambridgeAuthors: Quentin Paletta; Anthony Hu; Guillaume Arbod; Joan Lasenby;Efficient integration of solar energy into the electricity mix depends on a reliable anticipation of its intermittency. A promising approach to forecast the temporal variability of solar irradiance resulting from the cloud cover dynamics is based on the analysis of sequences of ground-taken sky images or satellite observations. Despite encouraging results, a recurrent limitation of existing deep learning approaches lies in the ubiquitous tendency of reacting to past observations rather than actively anticipating future events. This leads to a frequent temporal lag and limited ability to predict sudden events. To address this challenge, we introduce ECLIPSE, a spatio-temporal neural network architecture that models cloud motion from sky images to not only predict future irradiance levels and associated uncertainties, but also segmented images, which provide richer information on the local irradiance map. We show that ECLIPSE anticipates critical events and reduces temporal delay while generating visually realistic futures. The model characteristics and properties are investigated with an ablation study and a comparative study on the benefits and different ways to integrate auxiliary data into the modelling. The model predictions are also interpreted through an analysis of the principal spatio-temporal components learned during network training. Manuscript accepted for publication in Applied Energy
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Cetengfei Zhang; Quan Zhou; Min Hua; Hongming Xu; Mike Bassett; Fanggang Zhang;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammet Deveci; Dragan Pamucar; Elif Oguz;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yongji Zhang; Minghui Lan; Yapu Zhao; Zhi Su; Yu Hao; Heran Du;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Funded by:EC | CUSTOM-ARTEC| CUSTOM-ARTAuthors: Resalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; +1 AuthorsResalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; Placidi, Marcel Jose;handle: 2117/370823
Thin-film photovoltaics (PV) cells offer several benefits over conventional first-generation PV technologies, including lighter weight, flexibility, and lower power generation cost. Among the competing thin-film technologies, chalcogenide solar cells offer promising performance on efficiency and technological maturity level. However, in order to appraise the performance of the technology thoroughly, issues such as raw materials scarcity, toxicity, and environmental impacts need to be investigated in detail. This paper therefore, for the first time, presents a cradle to gate life cycle assessment for four different emerging chalcogenide PV cells, and compares their results with copper zinc tin sulfide (CZTS) and the commercially available CIGS to examine their effectiveness in reducing the environmental impacts associated with PV technologies. To allow for a full range of indicators, life cycle assessment methods CML 2001, IMPACT 2002+, and ILCD 2011 were used to analyse the results. The results identify environmental hotspots associated with different materials and components and demonstrate that using current efficiencies, the environmental impact of copper indium gallium selenide (CIGS) for generating 1kWh electricity was lower than that of the other studied cells. However, at comparable efficiencies the antimony-based cells offered the lowest environmental impacts in all impact categories. The effect of materials used was also found to be lower than the impact of electricity consumed throughout the manufacturing process, with the absorber layer contributing the most to the majority of the impact categories examined. In terms of chemicals consumed, cadmium acetate contributed significantly to the majority of the environmental impacts. Stainless steel in the substrate/insulating layer and molybdenum in the back contact both contributed considerably to the toxicity and ozone depletion impact categories. This paper demonstrates considerable environmental benefits associated with non-toxic chalcogenide PV cells suggesting that the current environmental concerns can be addressed effectively using alternative materials and manufacturing techniques if current efficiencies are improved. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 91 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xiaojia Su; Bingxiang Sun; Jiaju Wang; Weige Zhang; Shichang Ma; Xitian He; Haijun Ruan;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | LHP-C-H-PLATE-4-DCEC| LHP-C-H-PLATE-4-DCXianling Wang; Jingxuan Yang; Qiaowei Wen; Samson Shittu; Guangming Liu; Zining Qiu; Xudong Zhao; Zhangyuan Wang;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Nan Li; Nan Li; Farhad Taghizadeh-Hesary; Xunwen Zhao; Zhenwei Pei; Xunpeng Shi; Hailin Mu;Abstract The present energy system faces at least two challenges. For one thing, the power system’s stability is challenged by the increasing penetration of variable renewable energies, especially wind power, due to its fluctuation and intermittency. For the other, the transport sector is facing enormous difficulty to decarbonize. This paper proposes a new energy system that integrates the hydrogen production and distribution system to the combined cooling, heating and power (CCHP) system with significant wind power to solve these two challenges simultaneously. The new energy system can meet the energy needs of the building. At the same time, the wind power utilization rate reaches 92.6%, and the typical daily hydrogen production capacity in winter, transition season and summer is 500 kg, 500 kg and 266 kg, respectively. The system’s energy efficiency is 72%, and the energy of the system is utilized efficiently. By comparison, the new system can reduce costs and carbon dioxide emissions, save primary energy, and effectively improve energy efficiency.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117619&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117619&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Daniel Coles; Bevan Wray; Rob Stevens; Scott Crawford; Shona Pennock; Jon Miles;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 United KingdomPublisher:Elsevier BV Authors: Li, Yang; Bu, Fanjin; Li, Yuanzheng; Long, Chao;Multi-uncertainties from power sources and loads have brought significant challenges to the stable demand supply of various resources at islands. To address these challenges, a comprehensive scheduling framework is proposed by introducing a model-free deep reinforcement learning (DRL) approach based on modeling an island integrated energy system (IES). In response to the shortage of freshwater on islands, in addition to the introduction of seawater desalination systems, a transmission structure of "hydrothermal simultaneous transmission" (HST) is proposed. The essence of the IES scheduling problem is the optimal combination of each unit's output, which is a typical timing control problem and conforms to the Markov decision-making solution framework of deep reinforcement learning. Deep reinforcement learning adapts to various changes and timely adjusts strategies through the interaction of agents and the environment, avoiding complicated modeling and prediction of multi-uncertainties. The simulation results show that the proposed scheduling framework properly handles multi-uncertainties from power sources and loads, achieves a stable demand supply for various resources, and has better performance than other real-time scheduling methods, especially in terms of computational efficiency. In addition, the HST model constitutes an active exploration to improve the utilization efficiency of island freshwater. Accepted by Applied Energy
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of CambridgeAuthors: Quentin Paletta; Anthony Hu; Guillaume Arbod; Joan Lasenby;Efficient integration of solar energy into the electricity mix depends on a reliable anticipation of its intermittency. A promising approach to forecast the temporal variability of solar irradiance resulting from the cloud cover dynamics is based on the analysis of sequences of ground-taken sky images or satellite observations. Despite encouraging results, a recurrent limitation of existing deep learning approaches lies in the ubiquitous tendency of reacting to past observations rather than actively anticipating future events. This leads to a frequent temporal lag and limited ability to predict sudden events. To address this challenge, we introduce ECLIPSE, a spatio-temporal neural network architecture that models cloud motion from sky images to not only predict future irradiance levels and associated uncertainties, but also segmented images, which provide richer information on the local irradiance map. We show that ECLIPSE anticipates critical events and reduces temporal delay while generating visually realistic futures. The model characteristics and properties are investigated with an ablation study and a comparative study on the benefits and different ways to integrate auxiliary data into the modelling. The model predictions are also interpreted through an analysis of the principal spatio-temporal components learned during network training. Manuscript accepted for publication in Applied Energy
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Cetengfei Zhang; Quan Zhou; Min Hua; Hongming Xu; Mike Bassett; Fanggang Zhang;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammet Deveci; Dragan Pamucar; Elif Oguz;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yongji Zhang; Minghui Lan; Yapu Zhao; Zhi Su; Yu Hao; Heran Du;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Funded by:EC | CUSTOM-ARTEC| CUSTOM-ARTAuthors: Resalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; +1 AuthorsResalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; Placidi, Marcel Jose;handle: 2117/370823
Thin-film photovoltaics (PV) cells offer several benefits over conventional first-generation PV technologies, including lighter weight, flexibility, and lower power generation cost. Among the competing thin-film technologies, chalcogenide solar cells offer promising performance on efficiency and technological maturity level. However, in order to appraise the performance of the technology thoroughly, issues such as raw materials scarcity, toxicity, and environmental impacts need to be investigated in detail. This paper therefore, for the first time, presents a cradle to gate life cycle assessment for four different emerging chalcogenide PV cells, and compares their results with copper zinc tin sulfide (CZTS) and the commercially available CIGS to examine their effectiveness in reducing the environmental impacts associated with PV technologies. To allow for a full range of indicators, life cycle assessment methods CML 2001, IMPACT 2002+, and ILCD 2011 were used to analyse the results. The results identify environmental hotspots associated with different materials and components and demonstrate that using current efficiencies, the environmental impact of copper indium gallium selenide (CIGS) for generating 1kWh electricity was lower than that of the other studied cells. However, at comparable efficiencies the antimony-based cells offered the lowest environmental impacts in all impact categories. The effect of materials used was also found to be lower than the impact of electricity consumed throughout the manufacturing process, with the absorber layer contributing the most to the majority of the impact categories examined. In terms of chemicals consumed, cadmium acetate contributed significantly to the majority of the environmental impacts. Stainless steel in the substrate/insulating layer and molybdenum in the back contact both contributed considerably to the toxicity and ozone depletion impact categories. This paper demonstrates considerable environmental benefits associated with non-toxic chalcogenide PV cells suggesting that the current environmental concerns can be addressed effectively using alternative materials and manufacturing techniques if current efficiencies are improved. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 91 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xiaojia Su; Bingxiang Sun; Jiaju Wang; Weige Zhang; Shichang Ma; Xitian He; Haijun Ruan;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | LHP-C-H-PLATE-4-DCEC| LHP-C-H-PLATE-4-DCXianling Wang; Jingxuan Yang; Qiaowei Wen; Samson Shittu; Guangming Liu; Zining Qiu; Xudong Zhao; Zhangyuan Wang;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Nan Li; Nan Li; Farhad Taghizadeh-Hesary; Xunwen Zhao; Zhenwei Pei; Xunpeng Shi; Hailin Mu;Abstract The present energy system faces at least two challenges. For one thing, the power system’s stability is challenged by the increasing penetration of variable renewable energies, especially wind power, due to its fluctuation and intermittency. For the other, the transport sector is facing enormous difficulty to decarbonize. This paper proposes a new energy system that integrates the hydrogen production and distribution system to the combined cooling, heating and power (CCHP) system with significant wind power to solve these two challenges simultaneously. The new energy system can meet the energy needs of the building. At the same time, the wind power utilization rate reaches 92.6%, and the typical daily hydrogen production capacity in winter, transition season and summer is 500 kg, 500 kg and 266 kg, respectively. The system’s energy efficiency is 72%, and the energy of the system is utilized efficiently. By comparison, the new system can reduce costs and carbon dioxide emissions, save primary energy, and effectively improve energy efficiency.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117619&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117619&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Daniel Coles; Bevan Wray; Rob Stevens; Scott Crawford; Shona Pennock; Jon Miles;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 United KingdomPublisher:Elsevier BV Authors: Li, Yang; Bu, Fanjin; Li, Yuanzheng; Long, Chao;Multi-uncertainties from power sources and loads have brought significant challenges to the stable demand supply of various resources at islands. To address these challenges, a comprehensive scheduling framework is proposed by introducing a model-free deep reinforcement learning (DRL) approach based on modeling an island integrated energy system (IES). In response to the shortage of freshwater on islands, in addition to the introduction of seawater desalination systems, a transmission structure of "hydrothermal simultaneous transmission" (HST) is proposed. The essence of the IES scheduling problem is the optimal combination of each unit's output, which is a typical timing control problem and conforms to the Markov decision-making solution framework of deep reinforcement learning. Deep reinforcement learning adapts to various changes and timely adjusts strategies through the interaction of agents and the environment, avoiding complicated modeling and prediction of multi-uncertainties. The simulation results show that the proposed scheduling framework properly handles multi-uncertainties from power sources and loads, achieves a stable demand supply for various resources, and has better performance than other real-time scheduling methods, especially in terms of computational efficiency. In addition, the HST model constitutes an active exploration to improve the utilization efficiency of island freshwater. Accepted by Applied Energy
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu