search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
6,491 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • 6. Clean water
  • US
  • IN
  • CA
  • JP

  • Authors: Finn, Thomas M;

    This data release contains the boundaries of assessment units and input data for the assessment of undiscovered oil and gas resources in the Mowry formation of the Wind River Basin Province in Wyoming. The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic elements that define the Assessment Unit, such as limits of reservoir rock, geologic structures, source rock, and seal lithologies. The only exceptions to this are Assessment Units that border the Federal-State water boundary. In these cases, the Federal-State water boundary forms part of the Assessment Unit boundary. Methodology of assessments are documented in USGS Data Series 547 for continuous assessments (https://pubs.usgs.gov/ds/547) and USGS DDS69-D, Chapter 21 for conventional assessments (https://pubs.usgs.gov/dds/dds-069/dds-069-d/REPORTS/69_D_CH_21.pdf). See supplemental information for a detailed list of files included this data release.

    1
    citations1
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Teo, Hoong Chen; Raghavan, Srivatsan; He, Xiaogang; Zeng, Zhenzhong; +9 Authors

    Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modelling for the period 2041–2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < 0.05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience non-significant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation. This dataset contains raw data outputs for Teo et al. (2022), Global Change Biology. Please see the published paper for further details on methods. For enquiries, please contact the corresponding authors: hcteo [at] u.nus.edu or lianpinkoh [at] nus.edu.sg.  Shapefiles can be opened with any GIS program such as ArcMap or QGIS. CSV files can be opened with any spreadsheet program such as Microsoft Excel or OpenOffice.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    downloaddownloads19
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gallagher, Brian; Geargeoura, Sarah; Fraser, Dylan;

    Salmonids are of immense socio-economic importance in much of the world but are threatened by climate change. This has generated a substantial literature documenting effects of climate variation on salmonid productivity in freshwater ecosystems, but there has been no global quantitative synthesis across studies. We conducted a systematic review and meta-analysis to gain quantitative insight into key factors shaping the effects of climate on salmonid productivity, ultimately collecting 1,321 correlations from 156 studies, representing 23 species across 24 countries. Fisher’s Z was used as the standardized effect size, and a series of weighted mixed-effects models were compared to identify covariates that best explained variation in effects. Patterns in climate effects were complex, and were driven by spatial (latitude, elevation), temporal (time-period, age-class), and biological (range, habitat type, anadromy) variation within and among study populations. These trends were often consistent with predictions based on salmonid thermal tolerances. Namely, warming and decreased precipitation tended to reduce productivity when high temperatures challenged upper thermal limits, while opposite patterns were common when cold temperatures limited productivity. Overall, variable climate impacts on salmonids suggest that future declines in some locations may be counterbalanced by gains in others. In particular, we suggest that future warming should (1) increase salmonid productivity at high latitudes and elevations (especially >60° and >1,500m), (2) reduce productivity in populations experiencing hotter and dryer growing season conditions, (3) favor non-native over native salmonids, and (4) impact lentic populations less negatively than lotic ones. These patterns should help conservation and management organizations identify populations most vulnerable to climate change, which can then be prioritized for protective measures. Our framework enables broad inferences about future productivity that can inform decision-making under climate change for salmonids and other taxa, but more widespread, standardized, and hypothesis-driven research is needed to expand current knowledge. See README document and R code. See README document.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: S. Nithyapriya; Sundaram Lalitha; R. Z. Sayyed; M. S. Reddy; +4 Authors

    Siderophores are low molecular weight secondary metabolites produced by microorganisms under low iron stress as a specific iron chelator. In the present study, a rhizospheric bacterium was isolated from the rhizosphere of sesame plants from Salem district, Tamil Nadu, India and later identified as Bacillus subtilis LSBS2. It exhibited multiple plant-growth-promoting (PGP) traits such as hydrogen cyanide (HCN), ammonia, and indole acetic acid (IAA), and solubilized phosphate. The chrome azurol sulphonate (CAS) agar plate assay was used to screen the siderophore production of LSBS2 and quantitatively the isolate produced 296 mg/L of siderophores in succinic acid medium. Further characterization of the siderophore revealed that the isolate produced catecholate siderophore bacillibactin. A pot culture experiment was used to explore the effect of LSBS2 and its siderophore in promoting iron absorption and plant growth of Sesamum indicum L. Data from the present study revealed that the multifarious Bacillus sp. LSBS2 could be exploited as a potential bioinoculant for growth and yield improvement in S. indicum.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    110
    citations110
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; +1 Authors

    Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sajjad Hossain Dinnar; Shobnom Islam; Manpreet Singh; Rishab Gaba;

    Rapid urbanization combined with high economic growth, industrialization, and changes in socio-economic conditions increase the quantity of municipal solid waste. Cities located in South-Asia are facing serious issues due to waste, with countries like India, Bangladesh, and Pakistan top of the list of bad waste management. The increasing generation of solid waste and also the improper management of waste in Bangladesh leads to environmental degradation. Current waste management practice in Bangladesh is so weak that day by day it is harming the climate and creating a lot of unwanted situations. This research consists of an examination of the current administrative measures and presents another proposition for the executive cycle to decrease ecological contamination. The research study aims to decrease the amount of waste being dumped into municipal sanitary landfill sites & converting the waste into energy which is both financially and environmentally suitable by involving unemployed people in the management system. The results of this study will give an idea of how waste can be utilized as a resource and how this resource can be a capital good as well as how the local level problems can be solved by taking some strategies and making our environment suitable for future generations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geomatics and Enviro...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geomatics and Environmental Engineering
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geomatics and Environmental Engineering
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/h1...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/8z...
    Other literature type . 2021
    Data sources: Datacite
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geomatics and Enviro...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geomatics and Environmental Engineering
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geomatics and Environmental Engineering
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/h1...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/8z...
      Other literature type . 2021
      Data sources: Datacite
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jackson Nkoh Nkoh; Ni Ni; Hai-long Lu; Hong-wei Lai; +11 Authors

    Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • Authors: Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; +1 Authors

    Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nelson, Daniel; Busch, Michelle; Kopp, Darin; Allen, Daniel;

    1. While climate change is altering ecosystems on a global scale, not all ecosystems are responding in the same way. The resilience of ecological communities may depend on whether food webs are producer- or detritus-based (i.e. “green” or “brown” food webs, respectively), or both (i.e. “multi-channel” food web). 2. Food web theory suggests that the presence of multiple energy pathways can enhance community stability and resilience and may modulate the responses of ecological communities to disturbances such as climate change. Despite important advances in food web theory, few studies have empirically investigated the resilience of ecological communities to climate change stressors in ecosystems with different primary energy channels. 3. We conducted a factorial experiment using outdoor stream mesocosms to investigate the independent and interactive effects of warming and drought on invertebrate communities in food webs with different energy channel configurations. Warming had little effect on invertebrates, but stream drying negatively impacted total invertebrate abundance, biomass, richness, and diversity. 4. Although resistance to drying did not differ among energy channel treatments, recovery and overall resilience were higher in green mesocosms than in mixed and brown mesocosms. Resilience to drying also varied widely among taxa, with larger predatory taxa exhibiting lower resilience. 5. Our results suggest that the effects of drought on stream communities may vary regionally and depend on whether food webs are fueled by autochthonous or allochthonous basal resources. Communities inhabiting streams with large amounts of organic matter and more complex substrates that provide refugia may be more resilient to the loss of surface water than communities inhabiting streams with simpler, more homogeneous substrates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads19
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Parks, Sean; Holsinger, Lisa; Abatzoglou, John; Littlefield, Caitlin; +1 Authors

    Identifying climate analogs We followed the methods of Abatzoglou et al. (2020) and Parks et al. (2022) to characterize climate and identify backward and forward climate analogs. The specific climate variables we used were average minimum temperature of the coldest month (Tmin), average maximum temperature of the warmest month (Tmax), annual actual evapotranspiration (AET), and annual climate water deficit (CWD). AET and CWD concurrently account for evaporative demand and availability of water (N. L. Stephenson, 1990). These four variables provide complementary information pertinent to ecological systems and collectively capture the major climatic constraints on species distributions and ecological processes across a range of taxa (Dobrowski et al., 2021; Lutz et al., 2010; Parker & Abatzoglou, 2016; N. Stephenson, 1998; C. M. Williams et al., 2015). Monthly data acquired from TerraClimate (Abatzoglou et al., 2018) were used to produce these annual summaries from 1961-1990 (resolution = ~4km), which were then averaged over the same time period to represent reference period climate normals. The reference time period (1961–1990) is meant to represent climate conditions and climate niches prior to the bulk of recent warming. Future climate conditions were also computed from TerraClimate (available from www.climatologylab.org/terraclimate.html) and correspond to a 2°C increase above pre-industrial levels that are likely to manifest by mid-21st century without immediate and massive changes in global climate policies (Friedlingstein et al., 2014). As with the reference period climate, we summarized the four +2°C climate metrics annually and over a 30-year time period to represent future climate normals. All analyses in this study were conducted in the R statistical platform (R Core Team, 2020). We identified backwards and forwards analogs by estimating the climatic dissimilarity between each protected focal pixel (resolution = ~4km to match gridded climate data) and all protected pixels within a 500-km radius using a standardized Mahalanobis distance (Mahony et al., 2017). We chose the 500-km search radius as it encompasses an upper range of dispersal for some terrestrial animals and plants (Chen et al., 2011) when assuming 2°C warming by the mid-21st century; this search radius has also been used in previous studies (Bellard et al., 2014; Parks et al., 2022; J. W. Williams et al., 2007). The Mahalanobis distance metric synthesized the four climate variables (i.e. Tmin, Tmax, AET, and CWD; fig. 2a) by measuring distance in multivariate space away from a centroid using principal components analysis of standardized anomalies. Mahalanobis distance scales multivariate mean climate conditions between a pixel and those within the search radius by the focal pixel’s covariance and magnitude of interannual climate variability (ICV) across the four metrics. For backwards analogs, we characterized +2°C ICV and reference period climate normals to calculate climatic dissimilarity; for forward analogs, we used reference period ICV and +2°C climatic normals to calculate climatic dissimilarity. We standardized Mahalanobis distance to account for data dimensionality by calculating a multivariate z-score (σd) based on a Chi distribution (Mahony et al., 2017). σd represents the climate similarity between each focal pixel and its candidate backward and forward analogs (i.e. all other protected terrestrial pixels within 500 km), and we considered any protected pixels with σd ≤ 0.5 as climate analogs (fig. 2b) (following Parks et al., 2022). We were unable to calculate Mahalanobis distance when there was no ICV for any one of the four variables, and as a consequence, these areas are omitted from all analyses; this affects, for example, a relatively small tropical area in South America (CWD=0 each year) and areas perennially covered by snow (CWD=0 each year; e.g. most of Greenland). We focused our analyses on protected areas as defined by the World Database on Protected Areas (WDPA) (IUCN & UNEP-WCMC, 2019) and included protected areas classified as IUCN (International Union of Conservation for Nature) Management Categories I-VI, except those identified as ‘proposed’, ‘marine’, or otherwise aquatic (e.g. wetland, riverine, endorheic). A large number of protected areas, however, were not assigned an IUCN category in the WDPA (identified as ‘Not Reported’, ‘Not Assigned’, or ‘Not Applicable’) but are likely to have reasonably high levels of protection (e.g. Kruger National Park in South Africa). We included these additional protected areas if the level of human modification was similar or less than that observed within IUCN category I-VI protected areas. To do so, we measured mean land-use intensity within each IUCN category I-VI protected area using the Human Modification Gradient (HMG) raster dataset (Kennedy et al., 2019) and calculated the 80th percentile of the resulting distribution. Any unassigned protected areas with a mean HMG less than or equal to this identified threshold were included in our study (following Dobrowski et al., 2021). We then converted this vector-based polygon dataset to raster format (resolution = ~4km to match gridded climate data; n=1,063,748 pixels). It is well-recognized that the WDPA contains a large number of duplicate and overlapping polygons (Palfrey et al., 2022; Vimal et al., 2021). Although this does not affect summaries across the globe or for individual countries (described below), it provides a challenge when trying to summarize by individual protected areas (due to double-counting). Consequently, we ‘cleaned’ the WDPA prior to summarizing the climate connectivity metrics for individual protected areas by removing polygons that exhibited ≥ 90% overlap with another; this resulted in 29,752 individual protected areas (available in the Electronic Supplemental Material). Least-cost path modelling Following Dobrowski and Parks (2016) and Carroll et al. (2018), we used least-cost path modelling (Adriaensen et al. 2003) to build potential climate-induced movement routes between each protected focal pixel and its backward and forward analogs. The least-cost models were parameterized with resistance surfaces based on climate dissimilarity and the human modification gradient (HMG) (Kennedy et al., 2019). For backward analog modelling, we characterized climatic dissimilarity (i.e. climatic resistance) using two intermediate surfaces, the first being the Mahalanobis distance between each focal pixel (using +2°C ICV) and all other pixels using reference period climate normals (fig. 2c) and the second being the Mahalanobis distance (using +2°C ICV) and all other pixels using +2°C climate normals (fig. 2d). These two surfaces provide a proxy for climate similarity designed to capture transient changes between the reference period and +2°C climate; these were then averaged to characterize the overall climatic resistance across time and space (fig. 2d). For forward analog modelling, the process is similar except we used reference period ICV when characterizing climatic resistance (fig. 2a-2d). We then multiplied the climatic resistance (fig. 2d) by HMG (fig. 2e) to create the final resistance surface for least-cost path modeling (cf. Parks et al., 2020). Prior to this step, we rescaled HMG from its native range (0–1) to 1–25 to correspond with the range of Mahalanobis distance values and thereby grant comparable weights to climatic resistance and HMG resistance (~95% of all Mahalanobis distance values are below 25 within a 500km radius). Open water was given a resistance=25 so that paths would avoid water when possible. Least-cost path modelling was achieved using the gdistance package (van Etten, 2017); paths represent the least accumulated cost across the final resistance surface (fig. 2f) between each focal pixel and analog (fig. 2g). Because paths were rarely straight lines, some were longer than the 500km that we established as a search radius. We removed these longer paths to abide by the biologically informed upper dispersal constraint. Calculating climate connectivity metrics and climate connectivity failure We calculated the length (i.e. dispersal exposure), land-use modification (i.e. human exposure), and climatic resistance (i.e. climate exposure) for each path, remembering that each focal pixel may have many analogs and resultant paths. Human exposure represents cumulative HMG (fig. 2e) across all pixels in a path and climate exposure represents cumulative climate resistance (fig. 2d) along a path. Human exposure and climate exposure were calculated by multiplying the mean HMG (unscaled; fig. 2f) and mean climate resistance (fig. 2d) along each path by the length of each path, respectively. Each path’s climate connectivity metric (dispersal, human, and climate exposure) was converted to a percentile (range = 0–100) to facilitate easier interpretation and comparison among metrics; relative to other protected pixels, small percentiles represent low exposure and large percentiles represent elevated exposure. We summarized (i.e. averaged the percentiles) dispersal exposure, human exposure, and climate exposure across each protected focal pixel (again, remembering that each pixel may have multiple analogs and resultant paths). Our fourth climate connectivity metric, analog exposure, can’t be summarized on a per-path basis, because by definition, there is no least-cost path when there are no protected climate analogs. Instead, protected pixels either do or do not have protected climate analogs. Focal pixels were identified as exhibiting climate connectivity failure when they exceeded the 75th percentile for dispersal or climate exposure, exceeded the 90th percentile for human exposure, or had no protected climate analog. We assumed that focal pixels exceeding these percentiles are located in landscapes that hinder successful range shifts among protected areas (i.e. climate connectivity failure) for a non-negligible proportion of extant species, considering that the biodiversity at a given site comprises mammals, birds, insects, mollusks, amphibians, reptiles, fish, crustaceans, annelids, vascular plants (e.g. trees grasses, shrubs), and non-vascular plants (e.g. fungi, mosses, lichens). The numerous and diverse species at a given site have a wide range of dispersal abilities, sensitivities to human land uses, and climatic tolerances. We used a higher threshold (90th percentile) for describing climate connectivity failure due to human exposure because large, remote protected areas in the network skew human exposure towards lower values from a global perspective. These percentile thresholds are likely conservative when considering the large number and diversity of species at a given site. In terms of dispersal, for example, many species have maximum dispersal capabilities on the range of 1 km/year or less (Jenkins et al., 2007; McLachlan et al., 2005; Schwartz et al., 2001). This represents dispersal of 75 km under 2°C warming in the 75 years covering the midpoint of the reference period (1975) to mid-21st century. In our study, the 75th percentile path length, corresponding to dispersal exposure, is ~385 km, well above such dispersal limits, supporting our assertion that the 75th percentile is conservative for estimating climate connectivity failure. Furthermore, the mean HMG value for a 100km path at the 90th percentile threshold is 0.22, which is well above the 0.1 threshold that Brennen et al. (2022) used to identify areas moderately to highly impacted by human land-uses. Lastly, the mean climatic distance for a 100km path at the 75th percentile is well over two standard deviations different, on average, from the focal pixel and analog. We report the percent of protected pixels across the globe and within each country that exhibits climate connectivity failure. We also assessed the potential for each of the 29,752 individual protected areas (e.g. Yellowstone National Park, Serengeti National Park) to undergo climate connectivity failure using a slightly different method. To do so, we calculated the mean percentile among pixels within each protected area for each of dispersal exposure, human exposure, and climate exposure (each metric was averaged across a protected area; the metrics themselves were not averaged with each other). We then calculated the percent of each protected area that did not have a protected climate analog (analog exposure). Although a binary approach (has or does not have an analog) is appropriate when evaluating individual focal pixels, a percent-based valuation is most appropriate and informative when evaluating individual protected areas with up to thousands of pixels. Individual protected areas exhibited climate connectivity failure if the mean dispersal exposure or climate exposure exceeded the 75th percentile, mean human exposure exceeded the 90th percentile, or the analog exposure exceeded 75%. References Abatzoglou, J. T., Dobrowski, S. Z., & Parks, S. A. (2020). Multivariate climate departures have outpaced univariate changes across global lands. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60270-5 Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5(1), Article 1. https://doi.org/10.1038/sdata.2017.191 Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., & Courchamp, F. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23(12), 1376–1386. https://doi.org/10.1111/geb.12228 Brennan, A., Naidoo, R., Greenstreet, L., Mehrabi, Z., Ramankutty, N., & Kremen, C. (2022). Functional connectivity of the world’s protected areas. Science, 376(6597), 1101–1104. https://doi.org/10.1126/science.abl8974 Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, 24(11), 5318–5331. https://doi.org/10.1111/gcb.14373 Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432 Dobrowski, S. Z., Littlefield, C. E., Lyons, D. S., Hollenberg, C., Carroll, C., Parks, S. A., Abatzoglou, J. T., Hegewisch, K., & Gage, J. (2021). Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Communications Earth & Environment, 2(1), Article 1. https://doi.org/10.1038/s43247-021-00270-z Dobrowski, S. Z., & Parks, S. A. (2016). Climate change velocity underestimates climate change exposure in mountainous regions. Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12349 Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P., & Le Quéré, C. (2014). Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 7(10), Article 10. https://doi.org/10.1038/ngeo2248 IUCN & UNEP-WCMC. (2019). Protected Planet: World Database on Protected Areas (WDPA). Accessed September 2019. Available at www.protectedplanet.net. (Accessed September 2019) [Map]. www.protected.planet.net Jenkins, D. G., Brescacin, C. R., Duxbury, C. V., Elliott, J. A., Evans, J. A., Grablow, K. R., Hillegass, M., Lyon, B. N., Metzger, G. A., Olandese, M. L., Pepe, D., Silvers, G. A., Suresch, H. N., Thompson, T. N., Trexler, C. M., Williams, G. E., Williams, N. C., & Williams, S. E. (2007). Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4), 415–425. https://doi.org/10.1111/j.1466-8238.2007.00312.x Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., & Kiesecker, J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology, 25(3), 811–826. https://doi.org/10.1111/gcb.14549 Lutz, J. A., van Wagtendonk, J. W., & Franklin, J. F. (2010). Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. Journal of Biogeography, 37(5), 936–950. https://doi.org/10.1111/j.1365-2699.2009.02268.x Mahony, C. R., Cannon, A. J., Wang, T., & Aitken, S. N. (2017). A closer look at novel climates: New methods and insights at continental to landscape scales. Global Change Biology, 23(9), 3934–3955. https://doi.org/10.1111/gcb.13645 McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86(8), 2088–2098. https://doi.org/10.1890/04-1036 Palfrey, R., Oldekop, J. A., & Holmes, G. (2022). Privately protected areas increase global protected area coverage and connectivity. Nature Ecology & Evolution, 6(6), Article 6. https://doi.org/10.1038/s41559-022-01715-0 Parker, L. E., & Abatzoglou, J. T. (2016). Projected changes in cold hardiness zones and suitable overwinter ranges of perennial crops over the United States. Environmental Research Letters, 11(3), 034001. https://doi.org/10.1088/1748-9326/11/3/034001 Parks, S. A., Carroll, C., Dobrowski, S. Z., & Allred, B. W. (2020). Human land uses reduce climate connectivity across North America. Global Change Biology, 26(5), 2944–2955. https://doi.org/10.1111/gcb.15009 Parks, S. A., Holsinger, L. M., Littlefield, C. E., Dobrowski, S. Z., Zeller, K. A., Abatzoglou, J. T., Besancon, C., Nordgren, B. L., & Lawler, J. J. (2022). Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environmental Research Letters, 17(5), 054016. https://doi.org/10.1088/1748-9326/ac6436 R Core Team. (2020). R: A language and environment for statistical computing. Schwartz, M. W., Iverson, L. R., & Prasad, A. M. (2001). Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing. Ecosystems, 4(6), 568–581. https://doi.org/10.1007/s10021-001-0030-3 Stephenson, N. (1998). Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25(5), 855–870. https://doi.org/10.1046/j.1365-2699.1998.00233.x Stephenson, N. L. (1990). Climatic Control of Vegetation Distribution: The Role of the Water Balance. The American Naturalist, 135(5), 649–670. https://doi.org/10.1086/285067 van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76, 1–21. https://doi.org/10.18637/jss.v076.i13 Vimal, R., Navarro, L. M., Jones, Y., Wolf, F., Le Moguédec, G., & Réjou-Méchain, M. (2021). The global distribution of protected areas management strategies and their complementarity for biodiversity conservation. Biological Conservation, 256, 109014. https://doi.org/10.1016/j.biocon.2021.109014 Williams, C. M., Henry, H. A. L., & Sinclair, B. J. (2015). Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90(1), 214–235. https://doi.org/10.1111/brv.12105 Williams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104 Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be travelled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land areas and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30x30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate. There are three files in this repository: 1) backward.analogs - master.table.xlsx – results for backward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 2) forward.analogs - master.table.xlsx – results for forward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 3) PA_shapefile - cleaned.zip: This is the ‘cleaned’ (see Methods) protected area shapefile we used as a way to summarize dispersal exposure, human exposure, climate exposure, and analog exposure for each protected area. Note that two of these files are Microsoft Excel; they should be accessible via LibreOffice and R and potentially other open-source alternatives.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
6,491 Research products
  • Authors: Finn, Thomas M;

    This data release contains the boundaries of assessment units and input data for the assessment of undiscovered oil and gas resources in the Mowry formation of the Wind River Basin Province in Wyoming. The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic elements that define the Assessment Unit, such as limits of reservoir rock, geologic structures, source rock, and seal lithologies. The only exceptions to this are Assessment Units that border the Federal-State water boundary. In these cases, the Federal-State water boundary forms part of the Assessment Unit boundary. Methodology of assessments are documented in USGS Data Series 547 for continuous assessments (https://pubs.usgs.gov/ds/547) and USGS DDS69-D, Chapter 21 for conventional assessments (https://pubs.usgs.gov/dds/dds-069/dds-069-d/REPORTS/69_D_CH_21.pdf). See supplemental information for a detailed list of files included this data release.

    1
    citations1
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Teo, Hoong Chen; Raghavan, Srivatsan; He, Xiaogang; Zeng, Zhenzhong; +9 Authors

    Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modelling for the period 2041–2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < 0.05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience non-significant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation. This dataset contains raw data outputs for Teo et al. (2022), Global Change Biology. Please see the published paper for further details on methods. For enquiries, please contact the corresponding authors: hcteo [at] u.nus.edu or lianpinkoh [at] nus.edu.sg.  Shapefiles can be opened with any GIS program such as ArcMap or QGIS. CSV files can be opened with any spreadsheet program such as Microsoft Excel or OpenOffice.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    downloaddownloads19
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gallagher, Brian; Geargeoura, Sarah; Fraser, Dylan;

    Salmonids are of immense socio-economic importance in much of the world but are threatened by climate change. This has generated a substantial literature documenting effects of climate variation on salmonid productivity in freshwater ecosystems, but there has been no global quantitative synthesis across studies. We conducted a systematic review and meta-analysis to gain quantitative insight into key factors shaping the effects of climate on salmonid productivity, ultimately collecting 1,321 correlations from 156 studies, representing 23 species across 24 countries. Fisher’s Z was used as the standardized effect size, and a series of weighted mixed-effects models were compared to identify covariates that best explained variation in effects. Patterns in climate effects were complex, and were driven by spatial (latitude, elevation), temporal (time-period, age-class), and biological (range, habitat type, anadromy) variation within and among study populations. These trends were often consistent with predictions based on salmonid thermal tolerances. Namely, warming and decreased precipitation tended to reduce productivity when high temperatures challenged upper thermal limits, while opposite patterns were common when cold temperatures limited productivity. Overall, variable climate impacts on salmonids suggest that future declines in some locations may be counterbalanced by gains in others. In particular, we suggest that future warming should (1) increase salmonid productivity at high latitudes and elevations (especially >60° and >1,500m), (2) reduce productivity in populations experiencing hotter and dryer growing season conditions, (3) favor non-native over native salmonids, and (4) impact lentic populations less negatively than lotic ones. These patterns should help conservation and management organizations identify populations most vulnerable to climate change, which can then be prioritized for protective measures. Our framework enables broad inferences about future productivity that can inform decision-making under climate change for salmonids and other taxa, but more widespread, standardized, and hypothesis-driven research is needed to expand current knowledge. See README document and R code. See README document.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: S. Nithyapriya; Sundaram Lalitha; R. Z. Sayyed; M. S. Reddy; +4 Authors

    Siderophores are low molecular weight secondary metabolites produced by microorganisms under low iron stress as a specific iron chelator. In the present study, a rhizospheric bacterium was isolated from the rhizosphere of sesame plants from Salem district, Tamil Nadu, India and later identified as Bacillus subtilis LSBS2. It exhibited multiple plant-growth-promoting (PGP) traits such as hydrogen cyanide (HCN), ammonia, and indole acetic acid (IAA), and solubilized phosphate. The chrome azurol sulphonate (CAS) agar plate assay was used to screen the siderophore production of LSBS2 and quantitatively the isolate produced 296 mg/L of siderophores in succinic acid medium. Further characterization of the siderophore revealed that the isolate produced catecholate siderophore bacillibactin. A pot culture experiment was used to explore the effect of LSBS2 and its siderophore in promoting iron absorption and plant growth of Sesamum indicum L. Data from the present study revealed that the multifarious Bacillus sp. LSBS2 could be exploited as a potential bioinoculant for growth and yield improvement in S. indicum.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    110
    citations110
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; +1 Authors

    Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sajjad Hossain Dinnar; Shobnom Islam; Manpreet Singh; Rishab Gaba;

    Rapid urbanization combined with high economic growth, industrialization, and changes in socio-economic conditions increase the quantity of municipal solid waste. Cities located in South-Asia are facing serious issues due to waste, with countries like India, Bangladesh, and Pakistan top of the list of bad waste management. The increasing generation of solid waste and also the improper management of waste in Bangladesh leads to environmental degradation. Current waste management practice in Bangladesh is so weak that day by day it is harming the climate and creating a lot of unwanted situations. This research consists of an examination of the current administrative measures and presents another proposition for the executive cycle to decrease ecological contamination. The research study aims to decrease the amount of waste being dumped into municipal sanitary landfill sites & converting the waste into energy which is both financially and environmentally suitable by involving unemployed people in the management system. The results of this study will give an idea of how waste can be utilized as a resource and how this resource can be a capital good as well as how the local level problems can be solved by taking some strategies and making our environment suitable for future generations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geomatics and Enviro...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geomatics and Environmental Engineering
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geomatics and Environmental Engineering
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/h1...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/8z...
    Other literature type . 2021
    Data sources: Datacite
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geomatics and Enviro...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geomatics and Environmental Engineering
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geomatics and Environmental Engineering
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/h1...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/8z...
      Other literature type . 2021
      Data sources: Datacite
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jackson Nkoh Nkoh; Ni Ni; Hai-long Lu; Hong-wei Lai; +11 Authors

    Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • Authors: Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; +1 Authors

    Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nelson, Daniel; Busch, Michelle; Kopp, Darin; Allen, Daniel;

    1. While climate change is altering ecosystems on a global scale, not all ecosystems are responding in the same way. The resilience of ecological communities may depend on whether food webs are producer- or detritus-based (i.e. “green” or “brown” food webs, respectively), or both (i.e. “multi-channel” food web). 2. Food web theory suggests that the presence of multiple energy pathways can enhance community stability and resilience and may modulate the responses of ecological communities to disturbances such as climate change. Despite important advances in food web theory, few studies have empirically investigated the resilience of ecological communities to climate change stressors in ecosystems with different primary energy channels. 3. We conducted a factorial experiment using outdoor stream mesocosms to investigate the independent and interactive effects of warming and drought on invertebrate communities in food webs with different energy channel configurations. Warming had little effect on invertebrates, but stream drying negatively impacted total invertebrate abundance, biomass, richness, and diversity. 4. Although resistance to drying did not differ among energy channel treatments, recovery and overall resilience were higher in green mesocosms than in mixed and brown mesocosms. Resilience to drying also varied widely among taxa, with larger predatory taxa exhibiting lower resilience. 5. Our results suggest that the effects of drought on stream communities may vary regionally and depend on whether food webs are fueled by autochthonous or allochthonous basal resources. Communities inhabiting streams with large amounts of organic matter and more complex substrates that provide refugia may be more resilient to the loss of surface water than communities inhabiting streams with simpler, more homogeneous substrates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads19
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Parks, Sean; Holsinger, Lisa; Abatzoglou, John; Littlefield, Caitlin; +1 Authors

    Identifying climate analogs We followed the methods of Abatzoglou et al. (2020) and Parks et al. (2022) to characterize climate and identify backward and forward climate analogs. The specific climate variables we used were average minimum temperature of the coldest month (Tmin), average maximum temperature of the warmest month (Tmax), annual actual evapotranspiration (AET), and annual climate water deficit (CWD). AET and CWD concurrently account for evaporative demand and availability of water (N. L. Stephenson, 1990). These four variables provide complementary information pertinent to ecological systems and collectively capture the major climatic constraints on species distributions and ecological processes across a range of taxa (Dobrowski et al., 2021; Lutz et al., 2010; Parker & Abatzoglou, 2016; N. Stephenson, 1998; C. M. Williams et al., 2015). Monthly data acquired from TerraClimate (Abatzoglou et al., 2018) were used to produce these annual summaries from 1961-1990 (resolution = ~4km), which were then averaged over the same time period to represent reference period climate normals. The reference time period (1961–1990) is meant to represent climate conditions and climate niches prior to the bulk of recent warming. Future climate conditions were also computed from TerraClimate (available from www.climatologylab.org/terraclimate.html) and correspond to a 2°C increase above pre-industrial levels that are likely to manifest by mid-21st century without immediate and massive changes in global climate policies (Friedlingstein et al., 2014). As with the reference period climate, we summarized the four +2°C climate metrics annually and over a 30-year time period to represent future climate normals. All analyses in this study were conducted in the R statistical platform (R Core Team, 2020). We identified backwards and forwards analogs by estimating the climatic dissimilarity between each protected focal pixel (resolution = ~4km to match gridded climate data) and all protected pixels within a 500-km radius using a standardized Mahalanobis distance (Mahony et al., 2017). We chose the 500-km search radius as it encompasses an upper range of dispersal for some terrestrial animals and plants (Chen et al., 2011) when assuming 2°C warming by the mid-21st century; this search radius has also been used in previous studies (Bellard et al., 2014; Parks et al., 2022; J. W. Williams et al., 2007). The Mahalanobis distance metric synthesized the four climate variables (i.e. Tmin, Tmax, AET, and CWD; fig. 2a) by measuring distance in multivariate space away from a centroid using principal components analysis of standardized anomalies. Mahalanobis distance scales multivariate mean climate conditions between a pixel and those within the search radius by the focal pixel’s covariance and magnitude of interannual climate variability (ICV) across the four metrics. For backwards analogs, we characterized +2°C ICV and reference period climate normals to calculate climatic dissimilarity; for forward analogs, we used reference period ICV and +2°C climatic normals to calculate climatic dissimilarity. We standardized Mahalanobis distance to account for data dimensionality by calculating a multivariate z-score (σd) based on a Chi distribution (Mahony et al., 2017). σd represents the climate similarity between each focal pixel and its candidate backward and forward analogs (i.e. all other protected terrestrial pixels within 500 km), and we considered any protected pixels with σd ≤ 0.5 as climate analogs (fig. 2b) (following Parks et al., 2022). We were unable to calculate Mahalanobis distance when there was no ICV for any one of the four variables, and as a consequence, these areas are omitted from all analyses; this affects, for example, a relatively small tropical area in South America (CWD=0 each year) and areas perennially covered by snow (CWD=0 each year; e.g. most of Greenland). We focused our analyses on protected areas as defined by the World Database on Protected Areas (WDPA) (IUCN & UNEP-WCMC, 2019) and included protected areas classified as IUCN (International Union of Conservation for Nature) Management Categories I-VI, except those identified as ‘proposed’, ‘marine’, or otherwise aquatic (e.g. wetland, riverine, endorheic). A large number of protected areas, however, were not assigned an IUCN category in the WDPA (identified as ‘Not Reported’, ‘Not Assigned’, or ‘Not Applicable’) but are likely to have reasonably high levels of protection (e.g. Kruger National Park in South Africa). We included these additional protected areas if the level of human modification was similar or less than that observed within IUCN category I-VI protected areas. To do so, we measured mean land-use intensity within each IUCN category I-VI protected area using the Human Modification Gradient (HMG) raster dataset (Kennedy et al., 2019) and calculated the 80th percentile of the resulting distribution. Any unassigned protected areas with a mean HMG less than or equal to this identified threshold were included in our study (following Dobrowski et al., 2021). We then converted this vector-based polygon dataset to raster format (resolution = ~4km to match gridded climate data; n=1,063,748 pixels). It is well-recognized that the WDPA contains a large number of duplicate and overlapping polygons (Palfrey et al., 2022; Vimal et al., 2021). Although this does not affect summaries across the globe or for individual countries (described below), it provides a challenge when trying to summarize by individual protected areas (due to double-counting). Consequently, we ‘cleaned’ the WDPA prior to summarizing the climate connectivity metrics for individual protected areas by removing polygons that exhibited ≥ 90% overlap with another; this resulted in 29,752 individual protected areas (available in the Electronic Supplemental Material). Least-cost path modelling Following Dobrowski and Parks (2016) and Carroll et al. (2018), we used least-cost path modelling (Adriaensen et al. 2003) to build potential climate-induced movement routes between each protected focal pixel and its backward and forward analogs. The least-cost models were parameterized with resistance surfaces based on climate dissimilarity and the human modification gradient (HMG) (Kennedy et al., 2019). For backward analog modelling, we characterized climatic dissimilarity (i.e. climatic resistance) using two intermediate surfaces, the first being the Mahalanobis distance between each focal pixel (using +2°C ICV) and all other pixels using reference period climate normals (fig. 2c) and the second being the Mahalanobis distance (using +2°C ICV) and all other pixels using +2°C climate normals (fig. 2d). These two surfaces provide a proxy for climate similarity designed to capture transient changes between the reference period and +2°C climate; these were then averaged to characterize the overall climatic resistance across time and space (fig. 2d). For forward analog modelling, the process is similar except we used reference period ICV when characterizing climatic resistance (fig. 2a-2d). We then multiplied the climatic resistance (fig. 2d) by HMG (fig. 2e) to create the final resistance surface for least-cost path modeling (cf. Parks et al., 2020). Prior to this step, we rescaled HMG from its native range (0–1) to 1–25 to correspond with the range of Mahalanobis distance values and thereby grant comparable weights to climatic resistance and HMG resistance (~95% of all Mahalanobis distance values are below 25 within a 500km radius). Open water was given a resistance=25 so that paths would avoid water when possible. Least-cost path modelling was achieved using the gdistance package (van Etten, 2017); paths represent the least accumulated cost across the final resistance surface (fig. 2f) between each focal pixel and analog (fig. 2g). Because paths were rarely straight lines, some were longer than the 500km that we established as a search radius. We removed these longer paths to abide by the biologically informed upper dispersal constraint. Calculating climate connectivity metrics and climate connectivity failure We calculated the length (i.e. dispersal exposure), land-use modification (i.e. human exposure), and climatic resistance (i.e. climate exposure) for each path, remembering that each focal pixel may have many analogs and resultant paths. Human exposure represents cumulative HMG (fig. 2e) across all pixels in a path and climate exposure represents cumulative climate resistance (fig. 2d) along a path. Human exposure and climate exposure were calculated by multiplying the mean HMG (unscaled; fig. 2f) and mean climate resistance (fig. 2d) along each path by the length of each path, respectively. Each path’s climate connectivity metric (dispersal, human, and climate exposure) was converted to a percentile (range = 0–100) to facilitate easier interpretation and comparison among metrics; relative to other protected pixels, small percentiles represent low exposure and large percentiles represent elevated exposure. We summarized (i.e. averaged the percentiles) dispersal exposure, human exposure, and climate exposure across each protected focal pixel (again, remembering that each pixel may have multiple analogs and resultant paths). Our fourth climate connectivity metric, analog exposure, can’t be summarized on a per-path basis, because by definition, there is no least-cost path when there are no protected climate analogs. Instead, protected pixels either do or do not have protected climate analogs. Focal pixels were identified as exhibiting climate connectivity failure when they exceeded the 75th percentile for dispersal or climate exposure, exceeded the 90th percentile for human exposure, or had no protected climate analog. We assumed that focal pixels exceeding these percentiles are located in landscapes that hinder successful range shifts among protected areas (i.e. climate connectivity failure) for a non-negligible proportion of extant species, considering that the biodiversity at a given site comprises mammals, birds, insects, mollusks, amphibians, reptiles, fish, crustaceans, annelids, vascular plants (e.g. trees grasses, shrubs), and non-vascular plants (e.g. fungi, mosses, lichens). The numerous and diverse species at a given site have a wide range of dispersal abilities, sensitivities to human land uses, and climatic tolerances. We used a higher threshold (90th percentile) for describing climate connectivity failure due to human exposure because large, remote protected areas in the network skew human exposure towards lower values from a global perspective. These percentile thresholds are likely conservative when considering the large number and diversity of species at a given site. In terms of dispersal, for example, many species have maximum dispersal capabilities on the range of 1 km/year or less (Jenkins et al., 2007; McLachlan et al., 2005; Schwartz et al., 2001). This represents dispersal of 75 km under 2°C warming in the 75 years covering the midpoint of the reference period (1975) to mid-21st century. In our study, the 75th percentile path length, corresponding to dispersal exposure, is ~385 km, well above such dispersal limits, supporting our assertion that the 75th percentile is conservative for estimating climate connectivity failure. Furthermore, the mean HMG value for a 100km path at the 90th percentile threshold is 0.22, which is well above the 0.1 threshold that Brennen et al. (2022) used to identify areas moderately to highly impacted by human land-uses. Lastly, the mean climatic distance for a 100km path at the 75th percentile is well over two standard deviations different, on average, from the focal pixel and analog. We report the percent of protected pixels across the globe and within each country that exhibits climate connectivity failure. We also assessed the potential for each of the 29,752 individual protected areas (e.g. Yellowstone National Park, Serengeti National Park) to undergo climate connectivity failure using a slightly different method. To do so, we calculated the mean percentile among pixels within each protected area for each of dispersal exposure, human exposure, and climate exposure (each metric was averaged across a protected area; the metrics themselves were not averaged with each other). We then calculated the percent of each protected area that did not have a protected climate analog (analog exposure). Although a binary approach (has or does not have an analog) is appropriate when evaluating individual focal pixels, a percent-based valuation is most appropriate and informative when evaluating individual protected areas with up to thousands of pixels. Individual protected areas exhibited climate connectivity failure if the mean dispersal exposure or climate exposure exceeded the 75th percentile, mean human exposure exceeded the 90th percentile, or the analog exposure exceeded 75%. References Abatzoglou, J. T., Dobrowski, S. Z., & Parks, S. A. (2020). Multivariate climate departures have outpaced univariate changes across global lands. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60270-5 Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5(1), Article 1. https://doi.org/10.1038/sdata.2017.191 Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., & Courchamp, F. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23(12), 1376–1386. https://doi.org/10.1111/geb.12228 Brennan, A., Naidoo, R., Greenstreet, L., Mehrabi, Z., Ramankutty, N., & Kremen, C. (2022). Functional connectivity of the world’s protected areas. Science, 376(6597), 1101–1104. https://doi.org/10.1126/science.abl8974 Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, 24(11), 5318–5331. https://doi.org/10.1111/gcb.14373 Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432 Dobrowski, S. Z., Littlefield, C. E., Lyons, D. S., Hollenberg, C., Carroll, C., Parks, S. A., Abatzoglou, J. T., Hegewisch, K., & Gage, J. (2021). Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Communications Earth & Environment, 2(1), Article 1. https://doi.org/10.1038/s43247-021-00270-z Dobrowski, S. Z., & Parks, S. A. (2016). Climate change velocity underestimates climate change exposure in mountainous regions. Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12349 Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P., & Le Quéré, C. (2014). Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 7(10), Article 10. https://doi.org/10.1038/ngeo2248 IUCN & UNEP-WCMC. (2019). Protected Planet: World Database on Protected Areas (WDPA). Accessed September 2019. Available at www.protectedplanet.net. (Accessed September 2019) [Map]. www.protected.planet.net Jenkins, D. G., Brescacin, C. R., Duxbury, C. V., Elliott, J. A., Evans, J. A., Grablow, K. R., Hillegass, M., Lyon, B. N., Metzger, G. A., Olandese, M. L., Pepe, D., Silvers, G. A., Suresch, H. N., Thompson, T. N., Trexler, C. M., Williams, G. E., Williams, N. C., & Williams, S. E. (2007). Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4), 415–425. https://doi.org/10.1111/j.1466-8238.2007.00312.x Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., & Kiesecker, J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology, 25(3), 811–826. https://doi.org/10.1111/gcb.14549 Lutz, J. A., van Wagtendonk, J. W., & Franklin, J. F. (2010). Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. Journal of Biogeography, 37(5), 936–950. https://doi.org/10.1111/j.1365-2699.2009.02268.x Mahony, C. R., Cannon, A. J., Wang, T., & Aitken, S. N. (2017). A closer look at novel climates: New methods and insights at continental to landscape scales. Global Change Biology, 23(9), 3934–3955. https://doi.org/10.1111/gcb.13645 McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86(8), 2088–2098. https://doi.org/10.1890/04-1036 Palfrey, R., Oldekop, J. A., & Holmes, G. (2022). Privately protected areas increase global protected area coverage and connectivity. Nature Ecology & Evolution, 6(6), Article 6. https://doi.org/10.1038/s41559-022-01715-0 Parker, L. E., & Abatzoglou, J. T. (2016). Projected changes in cold hardiness zones and suitable overwinter ranges of perennial crops over the United States. Environmental Research Letters, 11(3), 034001. https://doi.org/10.1088/1748-9326/11/3/034001 Parks, S. A., Carroll, C., Dobrowski, S. Z., & Allred, B. W. (2020). Human land uses reduce climate connectivity across North America. Global Change Biology, 26(5), 2944–2955. https://doi.org/10.1111/gcb.15009 Parks, S. A., Holsinger, L. M., Littlefield, C. E., Dobrowski, S. Z., Zeller, K. A., Abatzoglou, J. T., Besancon, C., Nordgren, B. L., & Lawler, J. J. (2022). Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environmental Research Letters, 17(5), 054016. https://doi.org/10.1088/1748-9326/ac6436 R Core Team. (2020). R: A language and environment for statistical computing. Schwartz, M. W., Iverson, L. R., & Prasad, A. M. (2001). Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing. Ecosystems, 4(6), 568–581. https://doi.org/10.1007/s10021-001-0030-3 Stephenson, N. (1998). Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25(5), 855–870. https://doi.org/10.1046/j.1365-2699.1998.00233.x Stephenson, N. L. (1990). Climatic Control of Vegetation Distribution: The Role of the Water Balance. The American Naturalist, 135(5), 649–670. https://doi.org/10.1086/285067 van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76, 1–21. https://doi.org/10.18637/jss.v076.i13 Vimal, R., Navarro, L. M., Jones, Y., Wolf, F., Le Moguédec, G., & Réjou-Méchain, M. (2021). The global distribution of protected areas management strategies and their complementarity for biodiversity conservation. Biological Conservation, 256, 109014. https://doi.org/10.1016/j.biocon.2021.109014 Williams, C. M., Henry, H. A. L., & Sinclair, B. J. (2015). Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90(1), 214–235. https://doi.org/10.1111/brv.12105 Williams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104 Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be travelled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land areas and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30x30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate. There are three files in this repository: 1) backward.analogs - master.table.xlsx – results for backward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 2) forward.analogs - master.table.xlsx – results for forward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 3) PA_shapefile - cleaned.zip: This is the ‘cleaned’ (see Methods) protected area shapefile we used as a way to summarize dispersal exposure, human exposure, climate exposure, and analog exposure for each protected area. Note that two of these files are Microsoft Excel; they should be accessible via LibreOffice and R and potentially other open-source alternatives.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite