- home
- Search
- Energy Research
- JP
- Tohoku University
- Energy Research
- JP
- Tohoku University
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Nguyen T. Hung; Ahmad R. T. Nugraha; Riichiro Saito;doi: 10.3390/en12234561
Thermoelectric (TE) material is a class of materials that can convert heat to electrical energy directly in a solid-state-device without any moving parts and that is environmentally friendly. The study and development of TE materials have grown quickly in the past decade. However, their development goes slowly by the lack of cheap TE materials with high Seebeck coefficient and good electrical conductivity. Carbon nanotubes (CNTs) are particularly attractive as TE materials because of at least three reasons: (1) CNTs possess various band gaps depending on their structure, (2) CNTs represent unique one-dimensional carbon materials which naturally satisfies the conditions of quantum confinement effect to enhance the TE efficiency and (3) CNTs provide us with a platform for developing lightweight and flexible TE devices due to their mechanical properties. The TE power factor is reported to reach 700–1000 μ W / m K 2 for both p-type and n-type CNTs when purified to contain only doped semiconducting CNT species. Therefore, CNTs are promising for a variety of TE applications in which the heat source is unlimited, such as waste heat or solar heat although their figure of merit Z T is still modest (0.05 at 300 K). In this paper, we review in detail from the basic concept of TE field to the fundamental TE properties of CNTs, as well as their applications. Furthermore, the strategies are discussed to improve the TE properties of CNTs. Finally, we give our perspectives on the tremendous potential of CNTs-based TE materials and composites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Informa UK Limited Katsuhiko Fujikawa; Tohru Kondo; Nobuyuki Imaishi; Mitsunori Hozawa; Takao Tsukada;doi: 10.1252/jcej.18.318
The combined effect of free and forced convections on mass transfer between two liquids was studied experimentally and theoretically. In the experiments, steady-state dissolution rates into flowing water of an aniline or furfural drop which was sandwiched between a capillary and a rod and had a nearly cylindrical surface were measured, and the continuousphase mass transfer coefficients were obtained. During an experimental run, the amount of the drop phase dissolved into water was supplied continuously through the capillary and the drop volume was kept constant. It was observed that the Sh values depend on the flow direction of water in the range of 5 < Re < 100 and that in the case of upward flow, Sh takes the minimum at some Re number. Numerical simulations of the phenomena were tried, using the finite element method, and the experimental results are explained qualitatively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1252/jcej.18.318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1252/jcej.18.318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Authors: Madalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; +196 AuthorsMadalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; Michael M. Berkebile-Weinberg; Samantha J. Grayson; Yash Patel; Danielle Goldwert; Yifei Pei; Alek Chakroff; Ekaterina Pronizius; Karlijn L. van den Broek; Denisa Vlasceanu; Sara Constantino; Michael J. Morais; Philipp Schumann; Steve Rathje; Ke Fang; Salvatore Maria Aglioti; Mark Alfano; Andy J. Alvarado-Yepez; Angélica Andersen; Frederik Anseel; Matthew A. J. Apps; Chillar Asadli; Fonda Jane Awuor; Flavio Azevedo; Piero Basaglia; Jocelyn J. Bélanger; Sebastian Berger; Paul Bertin; Michał Białek; Olga Bialobrzeska; Michelle Blaya-Burgo; Daniëlle N. M. Bleize; Simen Bø; Lea Boecker; Paulo S. Boggio; Sylvie Borau; Björn Bos; Ayoub Bouguettaya; Markus Brauer; Cameron Brick; Tymofii Brik; Roman Briker; Tobias Brosch; Ondrej Buchel; Daniel Buonauro; Radhika Butalia; Héctor Carvacho; Sarah A. E. Chamberlain; Hang-Yee Chan; Dawn Chow; Dongil Chung; Luca Cian; Noa Cohen-Eick; Luis Sebastian Contreras-Huerta; Davide Contu; Vladimir Cristea; Jo Cutler; Silvana D'Ottone; Jonas De Keersmaecker; Sarah Delcourt; Sylvain Delouvée; Kathi Diel; Benjamin D. Douglas; Moritz A. Drupp; Shreya Dubey; Jānis Ekmanis; Christian T. Elbaek; Mahmoud Elsherif; Iris M. Engelhard; Yannik A. Escher; Tom W. Etienne; Laura Farage; Ana Rita Farias; Stefan Feuerriegel; Andrej Findor; Lucia Freira; Malte Friese; Neil Philip Gains; Albina Gallyamova; Sandra J. Geiger; Oliver Genschow; Biljana Gjoneska; Theofilos Gkinopoulos; Beth Goldberg; Amit Goldenberg; Sarah Gradidge; Simone Grassini; Kurt Gray; Sonja Grelle; Siobhán M. Griffin; Lusine Grigoryan; Ani Grigoryan; Dmitry Grigoryev; June Gruber; Johnrev Guilaran; Britt Hadar; Ulf J.J. Hahnel; Eran Halperin; Annelie J. Harvey; Christian A. P. Haugestad; Aleksandra M. Herman; Hal E. Hershfield; Toshiyuki Himichi; Donald W. Hine; Wilhelm Hofmann; Lauren Howe; Enma T. Huaman-Chulluncuy; Guanxiong Huang; Tatsunori Ishii; Ayahito Ito; Fanli Jia; John T. Jost; Veljko Jovanović; Dominika Jurgiel; Ondřej Kácha; Reeta Kankaanpää; Jaroslaw Kantorowicz; Elena Kantorowicz-Reznichenko; Keren Kaplan Mintz; Ilker Kaya; Ozgur Kaya; Narine Khachatryan; Anna Klas; Colin Klein; Christian A. Klöckner; Lina Koppel; Alexandra I. Kosachenko; Emily J. Kothe; Ruth Krebs; Amy R. Krosch; Andre P.M. Krouwel; Yara Kyrychenko; Maria Lagomarsino; Claus Lamm; Florian Lange; Julia Lee Cunningham; Jeffrey Lees; Tak Yan Leung; Neil Levy; Patricia L. Lockwood; Chiara Longoni; Alberto López Ortega; David D. Loschelder; Jackson G. Lu; Yu Luo; Joseph Luomba; Annika E. Lutz; Johann M. Majer; Ezra Markowitz; Abigail A. Marsh; Karen Louise Mascarenhas; Bwambale Mbilingi; Winfred Mbungu; Cillian McHugh; Marijn H.C. Meijers; Hugo Mercier; Fenant Laurent Mhagama; Katerina Michalakis; Nace Mikus; Sarah Milliron; Panagiotis Mitkidis; Fredy S. Monge-Rodríguez; Youri L. Mora; David Moreau; Kosuke Motoki; Manuel Moyano; Mathilde Mus; Joaquin Navajas; Tam Luong Nguyen; Dung Minh Nguyen; Trieu Nguyen; Laura Niemi; Sari R. R. Nijssen; Gustav Nilsonne; Jonas P. Nitschke; Laila Nockur; Ritah Okura; Sezin Öner; Asil Ali Özdoğru; Helena Palumbo; Costas Panagopoulos; Maria Serena Panasiti; Philip Pärnamets; Mariola Paruzel-Czachura; Yuri G. Pavlov; César Payán-Gómez; Adam R. Pearson; Leonor Pereira da Costa; Hannes M. Petrowsky; Stefan Pfattheicher; Nhat Tan Pham; Vladimir Ponizovskiy; Clara Pretus; Gabriel G. Rêgo; Ritsaart Reimann; Shawn A. Rhoads; Julian Riano-Moreno;doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Irina, Melnikova; Sasai, Takahiro;This data set contains the 100-member ensembles of monthly gross primary production (GPP) estimated using the biosphere model BEAMS and d4PDF data for historical and non-warming climates in 1951-2010/2011, 100-member ensembles of yearly GPP of the historical sensitivity experiment for 7 input variables in 1951-2010, yearly GPP of the extended CO2 sensitivity experiment using four RCP scenarios in 1951-2300. Data is 0.5625-degree (640×320) 4-byte binary (.raw). Undefined value is -9999. For more details, please check the ReadmeGPP.pdf If you questions, please contact Irina Melnikova (irina.melnikova.russia@gmail.com)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3663074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 107visibility views 107 download downloads 67 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3663074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Wu Jin; Shuang Chen; Meng Zhang; Hideaki Kobayashi; Zuohua Huang; Senbin Yu; Jinhua Wang;Abstract Statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa was measured on a nozzle-type Bunsen burner with OH-PLIF technique. Turbulent burning velocity, flame surface density and flame brush thickness, as well as the local curvature and radius of curvature were derived from the experimental OH-PLIF images. Turbulence–flame interaction was analyzed based on the geometric parameters combined with laminar flame properties and turbulence length scales. Results show that the flame wrinkles at high pressure are dominated by small scale cusps superimposed with large scale flame branches which is a general characteristic of the turbulent premixed flames at high pressure. S T / S L increases remarkably with u ′/ S L and the influence of elevated pressure on S T / S L is significant. This is mainly due to the increase of flame front area caused by the turbulence wrinkling. Flame surface density significantly increases with the increase of pressure indicating that there is a large amount of fine cusps and small wrinkles in the flame front at high pressure. This would be due to the enhancement of the flame instability represented by effective Lewis number Le eff and flame intrinsic instability scale l i . With the increase of turbulence intensity, the Σ at high pressure increases while slightly decreases at normal pressure. The most frequent length scale of the flame front moves to smaller value and the possibility increases with the increase of u ′/ S L for all pressures. The effect of flame intrinsic instability on finer flame front at high pressure is mainly on the formation of a large number of convex structures which enlarge the effective contact surface between flame front and unburned reactants, resulting in the increase of S T / S L .
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2015.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2015.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 JapanPublisher:Elsevier BV Takuji Harada; Hirotatsu Watanabe; Yoshiyuki Suzuki; Haruyuki Kamata; Yohsuke Matsushita; Hideyuki Aoki; Takatoshi Miura;Abstract Numerical simulations of combined natural convection–conduction in a droplet of n-dodecane suspended from a thermocouple were carried out, taking into consideration evaporation, and the effect of thermocouple diameter on the evaporation characteristics was investigated. The calculated temperature history of the droplet is in good agreement with experimental results; both show that the rate of heating decreases with increasing thermocouple diameter. The maximum error in temperature due to the thermocouple increases linearly with increasing thermocouple diameter. Thus, in investigations involving a droplet suspended from a thermocouple, it is preferable to use a thermocouple with the smallest possible diameter.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2010.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2010.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1975Publisher:Wiley Authors: Risaburo Sato; N. Nishizuka;Electrical Engineeri... arrow_drop_down Electrical Engineering in JapanArticle . 1975 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eej.4390950216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Electrical Engineeri... arrow_drop_down Electrical Engineering in JapanArticle . 1975 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eej.4390950216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: Yasukatsu Tamai; Takayuki Takarada; Akira Tomita;The reactivities of 34 coal chars of varying rank with H2O have been determined to examine the effect of coal rank on the gasification rate of coal char. The reactivities of chars derived from caking coals and anthracites (carbon content > 78 wt%, daf) were very small compared with those from non-caking (lower-rank) coals. The reactivities of low-rank chars do not correlate with the carbon content of the parent coals. To clarify which factor is more important in determining the reactivity, the evolution of CO and CO2 from char, the moisture content of char and the amount of exchangeable cations were determined for these low-rank coals or their chars. These values were considered to represent the amount of active carbon sties, the porosity and the catalysis by inherent mineral matters, respectively. It was concluded that the amount of surface active sites and/or the amount of exchangeable Ca and Na control the reactivity of low-rank chars in H2O.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0016-2361(85)90347-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 227 citations 227 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0016-2361(85)90347-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013Publisher:Elsevier BV Satoshi Kadowaki; Taku Kudo; Yuki Otawara; Hideaki Kobayashi; Masaki Okuyama; Yasuhiro Ogami; Futoshi Matsuno; Jinhua Wang; Jinhua Wang;Abstract Characteristics of turbulent premixed flames of a CO/H2/O2 mixture highly diluted with CO2 (CO/H2/CO2/O2 flame) at high pressures up to 1.0 MPa were experimentally investigated. The CO/H2 ratio, equivalence ratio and CO2 mole fraction were determined considering the typical composition of coal gasification syngas, laminar burning velocity, adiabatic flame temperature and stoichiometry for IGCC gas-turbine combustors connected to CCS systems. OH–PLIF and flame radiation measurement were performed for Bunsen-type flames stabilized in a high-pressure chamber. Using OH–PLIF images, flame surface density, mean volume of turbulent flame regions and turbulent burning velocity were calculated and compared with those for CH4/air flames and model coal gasification syngas flames burnt with air (CO/H2/CO2/air flame). The flame surface density for the CO/H2/CO2/O2 flames was much greater than that for the CH4/air flames, even greater than that of the CO/H2/CO2/air flames, presumably due to less flame passivity against turbulent vortex motion caused by smaller Markstein length and smaller scales of flame wrinkles at high pressure. The mean volume of the turbulent flame region for the CO/H2/CO2/O2 flames was close to that of CO/H2/CO2/air flames, while much smaller than that of the CH4/air flames, which was also explicable based on the Markstein length effects on turbulent flames at high pressure. ST/SL of the model syngas flames was larger than that of the CH4/air flames and it was noted that the difference in turbulence Reynolds number caused by smaller kinematic viscosity of the CO/H2/CO2/O2 mixture should be considered to understand the ST/SL characteristics. Total radiation intensity of the CO/H2/CO2/O2 flame was about 1.6 times stronger than that of CH4/air flames due to the very high CO2 concentration, CO2 being a highly radiative species, indicating very high heat-load for gas-turbine combustors that should be considered for combustor design.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2012.05.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2012.05.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Shuhei Yoshida; Hiroki Nagai; Takurou Daimaru;Abstract This paper discusses the thermal cycle found within oscillating heat pipes (OHPs). An OHP is a two-phase heat transfer device using self-exited oscillation. Over the past few decades, a considerable number of studies have been conducted to understand the physics of OHP phenomena. However, little is known about the thermal cycle in OHPs. In this study, we developed a one-dimensional slug flow model to reproduce thermal and hydrodynamic phenomena in OHPs. Fast Fourier transform (FFT) and cross-correlation analysis were used to process oscillation waveform data. A multi-branch OHP consisting of a stainless steel pipe wall and R134a working fluid was simulated. The numerical results revealed pressure propagation within the OHP. Moreover, the results indicated that the vapor volume oscillated with the same frequency as the pressure. Additionally, the vapor plug obtained energy or performed work depending on the direction of pressure propagation. As a result, the propagation of energy was identified as a reason for pressure propagation within the OHP.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.11.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.11.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Nguyen T. Hung; Ahmad R. T. Nugraha; Riichiro Saito;doi: 10.3390/en12234561
Thermoelectric (TE) material is a class of materials that can convert heat to electrical energy directly in a solid-state-device without any moving parts and that is environmentally friendly. The study and development of TE materials have grown quickly in the past decade. However, their development goes slowly by the lack of cheap TE materials with high Seebeck coefficient and good electrical conductivity. Carbon nanotubes (CNTs) are particularly attractive as TE materials because of at least three reasons: (1) CNTs possess various band gaps depending on their structure, (2) CNTs represent unique one-dimensional carbon materials which naturally satisfies the conditions of quantum confinement effect to enhance the TE efficiency and (3) CNTs provide us with a platform for developing lightweight and flexible TE devices due to their mechanical properties. The TE power factor is reported to reach 700–1000 μ W / m K 2 for both p-type and n-type CNTs when purified to contain only doped semiconducting CNT species. Therefore, CNTs are promising for a variety of TE applications in which the heat source is unlimited, such as waste heat or solar heat although their figure of merit Z T is still modest (0.05 at 300 K). In this paper, we review in detail from the basic concept of TE field to the fundamental TE properties of CNTs, as well as their applications. Furthermore, the strategies are discussed to improve the TE properties of CNTs. Finally, we give our perspectives on the tremendous potential of CNTs-based TE materials and composites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Informa UK Limited Katsuhiko Fujikawa; Tohru Kondo; Nobuyuki Imaishi; Mitsunori Hozawa; Takao Tsukada;doi: 10.1252/jcej.18.318
The combined effect of free and forced convections on mass transfer between two liquids was studied experimentally and theoretically. In the experiments, steady-state dissolution rates into flowing water of an aniline or furfural drop which was sandwiched between a capillary and a rod and had a nearly cylindrical surface were measured, and the continuousphase mass transfer coefficients were obtained. During an experimental run, the amount of the drop phase dissolved into water was supplied continuously through the capillary and the drop volume was kept constant. It was observed that the Sh values depend on the flow direction of water in the range of 5 < Re < 100 and that in the case of upward flow, Sh takes the minimum at some Re number. Numerical simulations of the phenomena were tried, using the finite element method, and the experimental results are explained qualitatively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1252/jcej.18.318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1252/jcej.18.318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Authors: Madalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; +196 AuthorsMadalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; Michael M. Berkebile-Weinberg; Samantha J. Grayson; Yash Patel; Danielle Goldwert; Yifei Pei; Alek Chakroff; Ekaterina Pronizius; Karlijn L. van den Broek; Denisa Vlasceanu; Sara Constantino; Michael J. Morais; Philipp Schumann; Steve Rathje; Ke Fang; Salvatore Maria Aglioti; Mark Alfano; Andy J. Alvarado-Yepez; Angélica Andersen; Frederik Anseel; Matthew A. J. Apps; Chillar Asadli; Fonda Jane Awuor; Flavio Azevedo; Piero Basaglia; Jocelyn J. Bélanger; Sebastian Berger; Paul Bertin; Michał Białek; Olga Bialobrzeska; Michelle Blaya-Burgo; Daniëlle N. M. Bleize; Simen Bø; Lea Boecker; Paulo S. Boggio; Sylvie Borau; Björn Bos; Ayoub Bouguettaya; Markus Brauer; Cameron Brick; Tymofii Brik; Roman Briker; Tobias Brosch; Ondrej Buchel; Daniel Buonauro; Radhika Butalia; Héctor Carvacho; Sarah A. E. Chamberlain; Hang-Yee Chan; Dawn Chow; Dongil Chung; Luca Cian; Noa Cohen-Eick; Luis Sebastian Contreras-Huerta; Davide Contu; Vladimir Cristea; Jo Cutler; Silvana D'Ottone; Jonas De Keersmaecker; Sarah Delcourt; Sylvain Delouvée; Kathi Diel; Benjamin D. Douglas; Moritz A. Drupp; Shreya Dubey; Jānis Ekmanis; Christian T. Elbaek; Mahmoud Elsherif; Iris M. Engelhard; Yannik A. Escher; Tom W. Etienne; Laura Farage; Ana Rita Farias; Stefan Feuerriegel; Andrej Findor; Lucia Freira; Malte Friese; Neil Philip Gains; Albina Gallyamova; Sandra J. Geiger; Oliver Genschow; Biljana Gjoneska; Theofilos Gkinopoulos; Beth Goldberg; Amit Goldenberg; Sarah Gradidge; Simone Grassini; Kurt Gray; Sonja Grelle; Siobhán M. Griffin; Lusine Grigoryan; Ani Grigoryan; Dmitry Grigoryev; June Gruber; Johnrev Guilaran; Britt Hadar; Ulf J.J. Hahnel; Eran Halperin; Annelie J. Harvey; Christian A. P. Haugestad; Aleksandra M. Herman; Hal E. Hershfield; Toshiyuki Himichi; Donald W. Hine; Wilhelm Hofmann; Lauren Howe; Enma T. Huaman-Chulluncuy; Guanxiong Huang; Tatsunori Ishii; Ayahito Ito; Fanli Jia; John T. Jost; Veljko Jovanović; Dominika Jurgiel; Ondřej Kácha; Reeta Kankaanpää; Jaroslaw Kantorowicz; Elena Kantorowicz-Reznichenko; Keren Kaplan Mintz; Ilker Kaya; Ozgur Kaya; Narine Khachatryan; Anna Klas; Colin Klein; Christian A. Klöckner; Lina Koppel; Alexandra I. Kosachenko; Emily J. Kothe; Ruth Krebs; Amy R. Krosch; Andre P.M. Krouwel; Yara Kyrychenko; Maria Lagomarsino; Claus Lamm; Florian Lange; Julia Lee Cunningham; Jeffrey Lees; Tak Yan Leung; Neil Levy; Patricia L. Lockwood; Chiara Longoni; Alberto López Ortega; David D. Loschelder; Jackson G. Lu; Yu Luo; Joseph Luomba; Annika E. Lutz; Johann M. Majer; Ezra Markowitz; Abigail A. Marsh; Karen Louise Mascarenhas; Bwambale Mbilingi; Winfred Mbungu; Cillian McHugh; Marijn H.C. Meijers; Hugo Mercier; Fenant Laurent Mhagama; Katerina Michalakis; Nace Mikus; Sarah Milliron; Panagiotis Mitkidis; Fredy S. Monge-Rodríguez; Youri L. Mora; David Moreau; Kosuke Motoki; Manuel Moyano; Mathilde Mus; Joaquin Navajas; Tam Luong Nguyen; Dung Minh Nguyen; Trieu Nguyen; Laura Niemi; Sari R. R. Nijssen; Gustav Nilsonne; Jonas P. Nitschke; Laila Nockur; Ritah Okura; Sezin Öner; Asil Ali Özdoğru; Helena Palumbo; Costas Panagopoulos; Maria Serena Panasiti; Philip Pärnamets; Mariola Paruzel-Czachura; Yuri G. Pavlov; César Payán-Gómez; Adam R. Pearson; Leonor Pereira da Costa; Hannes M. Petrowsky; Stefan Pfattheicher; Nhat Tan Pham; Vladimir Ponizovskiy; Clara Pretus; Gabriel G. Rêgo; Ritsaart Reimann; Shawn A. Rhoads; Julian Riano-Moreno;doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Irina, Melnikova; Sasai, Takahiro;This data set contains the 100-member ensembles of monthly gross primary production (GPP) estimated using the biosphere model BEAMS and d4PDF data for historical and non-warming climates in 1951-2010/2011, 100-member ensembles of yearly GPP of the historical sensitivity experiment for 7 input variables in 1951-2010, yearly GPP of the extended CO2 sensitivity experiment using four RCP scenarios in 1951-2300. Data is 0.5625-degree (640×320) 4-byte binary (.raw). Undefined value is -9999. For more details, please check the ReadmeGPP.pdf If you questions, please contact Irina Melnikova (irina.melnikova.russia@gmail.com)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3663074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 107visibility views 107 download downloads 67 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3663074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Wu Jin; Shuang Chen; Meng Zhang; Hideaki Kobayashi; Zuohua Huang; Senbin Yu; Jinhua Wang;Abstract Statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa was measured on a nozzle-type Bunsen burner with OH-PLIF technique. Turbulent burning velocity, flame surface density and flame brush thickness, as well as the local curvature and radius of curvature were derived from the experimental OH-PLIF images. Turbulence–flame interaction was analyzed based on the geometric parameters combined with laminar flame properties and turbulence length scales. Results show that the flame wrinkles at high pressure are dominated by small scale cusps superimposed with large scale flame branches which is a general characteristic of the turbulent premixed flames at high pressure. S T / S L increases remarkably with u ′/ S L and the influence of elevated pressure on S T / S L is significant. This is mainly due to the increase of flame front area caused by the turbulence wrinkling. Flame surface density significantly increases with the increase of pressure indicating that there is a large amount of fine cusps and small wrinkles in the flame front at high pressure. This would be due to the enhancement of the flame instability represented by effective Lewis number Le eff and flame intrinsic instability scale l i . With the increase of turbulence intensity, the Σ at high pressure increases while slightly decreases at normal pressure. The most frequent length scale of the flame front moves to smaller value and the possibility increases with the increase of u ′/ S L for all pressures. The effect of flame intrinsic instability on finer flame front at high pressure is mainly on the formation of a large number of convex structures which enlarge the effective contact surface between flame front and unburned reactants, resulting in the increase of S T / S L .
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2015.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2015.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 JapanPublisher:Elsevier BV Takuji Harada; Hirotatsu Watanabe; Yoshiyuki Suzuki; Haruyuki Kamata; Yohsuke Matsushita; Hideyuki Aoki; Takatoshi Miura;Abstract Numerical simulations of combined natural convection–conduction in a droplet of n-dodecane suspended from a thermocouple were carried out, taking into consideration evaporation, and the effect of thermocouple diameter on the evaporation characteristics was investigated. The calculated temperature history of the droplet is in good agreement with experimental results; both show that the rate of heating decreases with increasing thermocouple diameter. The maximum error in temperature due to the thermocouple increases linearly with increasing thermocouple diameter. Thus, in investigations involving a droplet suspended from a thermocouple, it is preferable to use a thermocouple with the smallest possible diameter.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2010.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2010.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1975Publisher:Wiley Authors: Risaburo Sato; N. Nishizuka;Electrical Engineeri... arrow_drop_down Electrical Engineering in JapanArticle . 1975 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eej.4390950216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Electrical Engineeri... arrow_drop_down Electrical Engineering in JapanArticle . 1975 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eej.4390950216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: Yasukatsu Tamai; Takayuki Takarada; Akira Tomita;The reactivities of 34 coal chars of varying rank with H2O have been determined to examine the effect of coal rank on the gasification rate of coal char. The reactivities of chars derived from caking coals and anthracites (carbon content > 78 wt%, daf) were very small compared with those from non-caking (lower-rank) coals. The reactivities of low-rank chars do not correlate with the carbon content of the parent coals. To clarify which factor is more important in determining the reactivity, the evolution of CO and CO2 from char, the moisture content of char and the amount of exchangeable cations were determined for these low-rank coals or their chars. These values were considered to represent the amount of active carbon sties, the porosity and the catalysis by inherent mineral matters, respectively. It was concluded that the amount of surface active sites and/or the amount of exchangeable Ca and Na control the reactivity of low-rank chars in H2O.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0016-2361(85)90347-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 227 citations 227 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0016-2361(85)90347-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013Publisher:Elsevier BV Satoshi Kadowaki; Taku Kudo; Yuki Otawara; Hideaki Kobayashi; Masaki Okuyama; Yasuhiro Ogami; Futoshi Matsuno; Jinhua Wang; Jinhua Wang;Abstract Characteristics of turbulent premixed flames of a CO/H2/O2 mixture highly diluted with CO2 (CO/H2/CO2/O2 flame) at high pressures up to 1.0 MPa were experimentally investigated. The CO/H2 ratio, equivalence ratio and CO2 mole fraction were determined considering the typical composition of coal gasification syngas, laminar burning velocity, adiabatic flame temperature and stoichiometry for IGCC gas-turbine combustors connected to CCS systems. OH–PLIF and flame radiation measurement were performed for Bunsen-type flames stabilized in a high-pressure chamber. Using OH–PLIF images, flame surface density, mean volume of turbulent flame regions and turbulent burning velocity were calculated and compared with those for CH4/air flames and model coal gasification syngas flames burnt with air (CO/H2/CO2/air flame). The flame surface density for the CO/H2/CO2/O2 flames was much greater than that for the CH4/air flames, even greater than that of the CO/H2/CO2/air flames, presumably due to less flame passivity against turbulent vortex motion caused by smaller Markstein length and smaller scales of flame wrinkles at high pressure. The mean volume of the turbulent flame region for the CO/H2/CO2/O2 flames was close to that of CO/H2/CO2/air flames, while much smaller than that of the CH4/air flames, which was also explicable based on the Markstein length effects on turbulent flames at high pressure. ST/SL of the model syngas flames was larger than that of the CH4/air flames and it was noted that the difference in turbulence Reynolds number caused by smaller kinematic viscosity of the CO/H2/CO2/O2 mixture should be considered to understand the ST/SL characteristics. Total radiation intensity of the CO/H2/CO2/O2 flame was about 1.6 times stronger than that of CH4/air flames due to the very high CO2 concentration, CO2 being a highly radiative species, indicating very high heat-load for gas-turbine combustors that should be considered for combustor design.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2012.05.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2012.05.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Shuhei Yoshida; Hiroki Nagai; Takurou Daimaru;Abstract This paper discusses the thermal cycle found within oscillating heat pipes (OHPs). An OHP is a two-phase heat transfer device using self-exited oscillation. Over the past few decades, a considerable number of studies have been conducted to understand the physics of OHP phenomena. However, little is known about the thermal cycle in OHPs. In this study, we developed a one-dimensional slug flow model to reproduce thermal and hydrodynamic phenomena in OHPs. Fast Fourier transform (FFT) and cross-correlation analysis were used to process oscillation waveform data. A multi-branch OHP consisting of a stainless steel pipe wall and R134a working fluid was simulated. The numerical results revealed pressure propagation within the OHP. Moreover, the results indicated that the vapor volume oscillated with the same frequency as the pressure. Additionally, the vapor plug obtained energy or performed work depending on the direction of pressure propagation. As a result, the propagation of energy was identified as a reason for pressure propagation within the OHP.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.11.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.11.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu