search
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,108 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • other engineering and technologies
  • 6. Clean water
  • ES
  • BE
  • MA
  • UA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Josef Maca; Michal Dohanyos; orcid Petr Dolejs;
    Petr Dolejs
    ORCID
    Harvested from ORCID Public Data File

    Petr Dolejs in OpenAIRE
    Jindřich Procházka;

    Ammonia increases buffer capacity of methanogenic medium in mesophilic anaerobic reactor thus increasing the stability of anaerobic digestion process. Optimal ammonia concentration ensures sufficient buffer capacity while not inhibiting the process. It was found out in this paper that this optimum depends on the quality of anaerobic sludge under investigation. The optimal concentrations for methanogens were 2.1, 2.6 and 3.1 g/L of ammonia nitrogen in dependence on inoculum origin. High ammonia nitrogen concentration (4.0 g/L) inhibited methane production, while low ammonia nitrogen concentration (0.5 g/L) caused low methane yield, loss of biomass (as VSS) and loss of the aceticlastic methanogenic activity. It was found out that negative effect of low ammonia nitrogen concentration on biomass is caused not only by low buffer capacity but also by insufficiency of nitrogen as nutrient. It was also found out that anaerobic sludge with higher ammonia nitrogen concentration (4.2 g/L) tolerates even concentration of volatile fatty acids (160 mmol/L) which causes inhibition of the process with low ammonia nitrogen concentration (0.2 g/L).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Microbiology and Biotechnology
    Article . 2011 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    218
    citations218
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Microbiology and Biotechnology
      Article . 2011 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lyubov Pyha; Juraj Durove; Yevhen Ogorodnyk; orcid Hennadii Haiko;
    Hennadii Haiko
    ORCID
    Harvested from ORCID Public Data File

    Hennadii Haiko in OpenAIRE

    The concept and a new method for the shielded development of bottom gas hydrates have been proposed, the technological phases and constructive elements of their implementation have been substantiated. The research provides for the realization of the idea suggesting the simultaneous dissociation of the vast areas of a gas hydrate deposit, management of the targeted process of the penetration of methane recovered from gas hydrates into water space and its accumulation under the extensive gas-collecting shield wherefrom it is removed by bottom pipe transportation facilities. To do hydraulic fracturing, a well is drilled into the plane of the junction of the surface of a gas hydrate deposit and the rocks of a roof, the open system of fissures in the rocks of a roof is made through which produced gas is released to a gas-collecting blanket in a water.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solid State Phenomen...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solid State Phenomena
    Article . 2018 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solid State Phenomen...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solid State Phenomena
      Article . 2018 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid De la Rubia Romero, M.A.;
    De la Rubia Romero, M.A.
    ORCID
    Harvested from ORCID Public Data File

    De la Rubia Romero, M.A. in OpenAIRE
    orcid Perez, M.;
    Perez, M.
    ORCID
    Harvested from ORCID Public Data File

    Perez, M. in OpenAIRE
    orcid Romero, L.I.;
    Romero, L.I.
    ORCID
    Harvested from ORCID Public Data File

    Romero, L.I. in OpenAIRE
    orcid Sales, D.;
    Sales, D.
    ORCID
    Harvested from ORCID Public Data File

    Sales, D. in OpenAIRE

    This paper describes anaerobic thermophilic sludge digestion (55 °C) in a continuously stirred tank reactor (CSTR) on a pilot-plant scale (150 L). The experimental protocol was defined to examine the effect of the increase in the organic loading rate on the efficiency of the digester and to report on its steady-state performance. The reactor was subjected to a programme of steady-state operation over a range of solids retention times (SRTs) of 75, 40, 27, 20 and 15 days and organic loading rates (OLR) in the range 0.4–2.2 kg VS/(m3 day). The digester was fed with raw sludge (containing approximately 35 kg/m3 volatile solids (VS)) once daily during the 75-day SRT period, twice daily during the 40-day SRT period and three times a day during the 27-, 20- and 15-day SRT periods. The reactor was initially operated with an organic loading rate of 0.4 kg VS/(m3 day) and an SRT of 75 days. The volatile solids removal efficiency in the reactor was found to be 73%, while the volumetric methane production rate produced in the digester reached 0.02 m3/(m3 day). Over a 338-day operating period, an OLR of 2.2 kg VS/(m3 day) was achieved with 49.1% VS removal efficiency in the pilot sludge digester, at which time the volumetric methane production rate content of biogas produced in the digester reached 0.4 m3/(m3 day). The chemical oxygen demand (COD) mass balance obtained indicated that COD used for methane generation increased when the SRT was decreased or when the influent organic loading rate was increased. This implies that the amount of COD used in the anabolism route decreased with SRT due the microbial population becoming adapted to new operational conditions and more COD being used to generate methane.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Process Biochemistryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Process Biochemistry
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    114
    citations114
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Process Biochemistryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Process Biochemistry
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Edmundo Muñoz;
    Edmundo Muñoz
    ORCID
    Harvested from ORCID Public Data File

    Edmundo Muñoz in OpenAIRE
    orcid Ana Belén Guerrero;
    Ana Belén Guerrero
    ORCID
    Harvested from ORCID Public Data File

    Ana Belén Guerrero in OpenAIRE

    Abstract Biofuels are considered as an alternative to partially replace fossil fuels and mitigate climate change effects. A life cycle assessment of second generation ethanol, derived from banana agricultural wastes, was developed to assess its environmental sustainability and demonstrate its capacity of reducing greenhouse gas emissions. The methodological approach was conducted in a Well-to-Wheel perspective, using as functional unit 1 MJ of energy released in the combustion of bioethanol in a passenger car from different bioethanol blends. Primary and secondary information sources were used for the assessment; mass balance and ethanol yield data came from laboratory experimentation. The environmental assessment was carried out using SimaPro 8.0.4.30 with the ReCiPe midpoint (H) impact assessment methodology. The quantified impact categories were climate change (CC), terrestrial acidification (TA), freshwater eutrophication (FE), photochemical oxidant formation (PO), particulate matter formation (PM), and fossil depletion (FD). In addition, net energy value and energy ratio (ER) were analyzed to ensure a positive energy balance. Compared to using pure gasoline, blended gasoline reduced CC, PO, PM, and FD impacts, but increased FE and TA impacts. The obtained energy balance was positive, with an ER of 2.68 MJ/MJ. Wastewater treatment is the process that presented the greatest energy consumption. Since Ecuador is the world's largest exporter of bananas, and a great amount of agricultural waste is available, a case study in this country was analyzed. This case study indicated that Ecuador could use banana residue for ethanol production, considering its positive and negative impacts. In conclusion, second generation ethanol derived from banana agricultural waste has potential to reduce greenhouse gas emissions and fossil depletion and has a positive energy balance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    91
    citations91
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Raphael Ricardo Zepon Tarpani;
    Raphael Ricardo Zepon Tarpani
    ORCID
    Harvested from ORCID Public Data File

    Raphael Ricardo Zepon Tarpani in OpenAIRE
    Carolina Alfonsín; orcid Almudena Hospido;
    Almudena Hospido
    ORCID
    Harvested from ORCID Public Data File

    Almudena Hospido in OpenAIRE
    orcid bw Adisa Azapagic;
    Adisa Azapagic
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Adisa Azapagic in OpenAIRE

    Sewage sludge handling is becoming a concern in Europe due to its increasing amount and the presence of contaminants, such as heavy metals and pharmaceutical and personal care products (PPCPs). Currently, over 70% of sludge in Europe is treated thermally by incineration or used as fertilizer in agriculture. New thermochemical methods are under development and are expected to be implemented in the near future. This paper considers the life cycle environmental impacts of the following five alternatives for sludge handling, taking into account the presence of heavy metals and PPCPs: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results suggest that anaerobic digestion with recovery of nutrients and electricity has the lowest environmental impacts in 11 out of 18 categories considered. For the mean to maximum resource recovery, composting is the worst alternative, followed by pyrolysis with lower recovery rates. Agricultural application of anaerobically digested sludge has the highest freshwater ecotoxicity due to heavy metals, unless their concentration is in the lowest range, as found in some European sewage sludge applied on land. Therefore, stricter control of heavy metals in the sludge is needed for this option to limit freshwater ecotoxicity to the levels comparable with the thermal processes. The results also indicate that PPCPs have a negligible contribution to freshwater ecotoxicity when compared to heavy metals in the anaerobically digested sludge. Since thermal processes are currently drawing attention due to their potential benefits, the findings of this work suggest that their adoption is environmentally beneficial only if high resource recovery rates can be achieved.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    85
    citations85
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: F. Sanz-Pérez; Miguel Ángel Hernandez; M. P. Domínguez; orcid G. San Miguel;
    G. San Miguel
    ORCID
    Harvested from ORCID Public Data File

    G. San Miguel in OpenAIRE

    Biomass gasification processes generate large amounts of solid. The aim of this work is to characterize the particles produced at a demonstration scale downdraft multi-stage gasification plant running on pinewood. The results have been used to understand their formation mechanism, evaluate potential applications and determine their hazardousness to human health and the environment. Chemical, physical, morphological and textural analyses suggest that most of the particles are formed via gas phase condensation reactions, with a very limited proportion resulting from direct carbonization of the original biomass feedstock. This is confirmed by a very limited micropore structure, surface area and adsorption capacity, making the particles unsuitable for use as an adsorbent in gas and water treatment applications. The particles exhibit superior fuel properties in terms of carbon content, heating value and thermal stability, which may be associated with the high temperatures at which they are generated. Due to their biomass origin, the particles contain a high proportion of calcium, potassium, magnesium and other plant micronutrients that could be beneficial if the material is used for soil conditioning and fertilizing. Regarding particle size distribution, most of the particles fitted in the range between 100 and 250 μm, with only 0.5 wt% smaller than 30 μm. This is too large for a carbon black surrogate but minimizes health risks associated with exposure to the lower regions of the respiratory tract. The concentration of biologically active PAH is sufficiently low to represent no hazard to the environment or human health.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid A. Castro;
    A. Castro
    ORCID
    Harvested from ORCID Public Data File

    A. Castro in OpenAIRE
    orcid Rodrigo Carballo;
    Rodrigo Carballo
    ORCID
    Harvested from ORCID Public Data File

    Rodrigo Carballo in OpenAIRE
    orcid Gregorio Iglesias;
    Gregorio Iglesias
    ORCID
    Harvested from ORCID Public Data File

    Gregorio Iglesias in OpenAIRE

    Abstract The residual circulation of the Ria de Muros, a large coastal embayment in NW Spain, are studied using a three-dimensional baroclinic finite-difference model. The driving forces considered by the model include the tide, winds, river inflows and density forcing at the open boundary. In situ data of current velocity and direction, water level, wind velocity and direction, river discharge, and temperature and salinity are used for model validation. Simulated and observed time series of water level and current velocity are in good agreement. Once validated, the model is applied to compute the residual circulation induced by the relevant agents of the ria hydrodynamics—the tide, an upwelling-favourable wind characteristic of spring and summer, a downwelling-favourable wind typical of winter, and freshwater inflows associated with high river runoff. The resulting residual circulation differ notably. The tide does not generate significant residual flows except in the inner ria. By contrast, winds and river discharges induce important residual flows throughout; in the middle and outer ria they generate a 3D residual circulation pattern which renders the conventional two-layer scheme of estuarine circulation too simplistic in this case. Thus, this first application of a 3D numerical model to the Ria de Muros sheds new light on its fundamental hydrodynamics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Marine Sy...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Marine Systems
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Marine Sy...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Marine Systems
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Lourdes García-Rodríguez;
    Lourdes García-Rodríguez
    ORCID
    Harvested from ORCID Public Data File

    Lourdes García-Rodríguez in OpenAIRE

    Millions of people have no access to a secure source of fresh water. Nevertheless, since many arid regions are coastal areas, seawater desalination is a reasonable alternative. On the other hand, the energy requirements of desalination processes are high. Then, the energy supply in low development countries or isolated areas may be a problem, especially if electricity is required. Since most arid regions have high renewable energy resources, the use of renewable energies in seawater desalination exhibits an interesting chance, or even the only way to offer a secure source of fresh water. The status and perspectives of development of coupling renewable energy systems with desalination units are reviewed. It is pointed out that there are place of development even for such technologies that seem to be the most mature ones.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    226
    citations226
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Pujades, Estanislao;
    Pujades, Estanislao
    ORCID
    Harvested from ORCID Public Data File

    Pujades, Estanislao in OpenAIRE
    Orban, Philippe; orcid Jurado, Anna;
    Jurado, Anna
    ORCID
    Harvested from ORCID Public Data File

    Jurado, Anna in OpenAIRE
    orcid Ayora, Carlos;
    Ayora, Carlos
    ORCID
    Harvested from ORCID Public Data File

    Ayora, Carlos in OpenAIRE
    +2 Authors

    Underground Pumped Storage Hydropower (UPSH) is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs of which at least one is underground. For this last reservoir, abandoned mines could be considered. UPSH related activities may induce hydrochemical variations, such as the increase of the oxygen (O2) partial pressure (pO2), which may entail negative consequences in terms of environment and efficiency, especially in coal mined areas where the presence of sulfide minerals is common. This work assesses the main expected environmental impacts that UPSH using abandoned coal mines may induce. © 2017 The Authors. Published by Elsevier Ltd. E. Pujades and A. Jurado gratefully acknowledge the financial support from the University of Liège and the EU through the Marie Curie BeIPD-COFUND postdoctoral fellowship programme (2014/16 and 2015/17 fellows from “FP7-MSCA-COFUND, 600405”). This research has been supported by the Public Service of Wallonia – Department of Energy and Sustainable Building. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2017 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Digital.CSIC
    Article . 2017 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim
    Access Routes
    Green
    gold
    21
    citations21
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility95
    visibilityviews95
    downloaddownloads46
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2017 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Digital.CSIC
      Article . 2017 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: A. V. Inkin; I. A. Sadovenko;

    The mathematical model of heat flow and transfer in roof rocks of underground gas gasifier during coal gasification is developed and tested. In terms of geological conditions in the Olkhovo-Nizhnee site (industrial region in Donbass), in Mathcad environment, convective and conductive components of heat flow from reaction channel to upper-lying aquifer are determined. The change in the heat flow from the reaction channel and in the ground water temperature is estimated depending on impermeable layer thickness and water well yield. It is found that after underground coal gasification, water-bearing sandstones accumulate more than 60% of heat migrating from gasifier to enclosing rock mass. It is shown that withdrawal and use of water heated during underground coal gasification will enhance efficiency of the process by 18–25% subject to thickness of partition layer.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Mining Sc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Mining Science
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Mining Sc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Mining Science
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph