- home
- Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- CA
- University of Calgary
- Energy Research
- 7. Clean energy
- 13. Climate action
- CA
- University of Calgary
description Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:EC | ECOCHANGEEC| ECOCHANGEAuthors: Macias-Fauria, M; Johnson, EA;Forests are expected to expand into alpine areas because of climate warming, causing land-cover change and fragmentation of alpine habitats. However, this expansion will only occur if the present upper treeline is limited by low-growing season temperatures that reduce plant growth. This temperature limitation has not been quantified at a landscape scale. Here, we show that temperature alone cannot realistically explain high-elevation tree cover over a >100-km 2 area in the Canadian Rockies and that geologic/geomorphic processes are fundamental to understanding the heterogeneous landscape distribution of trees. Furthermore, upslope tree advance in a warmer scenario will be severely limited by availability of sites with adequate geomorphic/topographic characteristics. Our results imply that landscape-to-regional scale projections of warming-induced, high-elevation forest advance into alpine areas should not be based solely on temperature-sensitive, site-specific upper-treeline studies but also on geomorphic processes that control tree occurrence at long (centuries/millennia) timescales.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1221278110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1221278110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 1996Publisher:Society of Petroleum Engineers (SPE) J.D.M. Belgrave; C.J. Laureshen; Matthew G. Ursenbach; S. A. Mehta; Robert Gordon Moore;Abstract Oils that are potential candidates for in situ combustion recovery processes are often screened by means of their oxidation characteristics: in particular, the kinetics of the ignition process and the transition from low-temperature to high-temperature oxidation through what is known as the "negative temperature gradient region". These characteristics are readily studied in ramped-temperature oxidation tests, which involve the controlled heating of recombined, oil-saturated cores in a one-dimensional plug flow reactor under a flowing stream of air (or oxygen-containing gas). The purpose of these tests is to study the global oxidation behavior and reaction kinetics under controlled conditions, with the end purpose of providing realistic data for incorporation into a numerical simulator which can he used to predict field performance. A ramped-temperature oxidation apparatus was used to conduct a detailed, two-year parametric study of the oxidation characteristics of Athabasca Oil Sands bitumen. The test matrix involved various levels of pressure gas injection rate, oxygen content of the injected gas and maximum ramp temperature. This paper details the principal findings for the 45-test study: in particular, the need to maintain high reaction temperatures >380 C) in order to mobilize and produce heavy oils under conditions of dry in situ combustion. Design considerations and operational guidelines for successful field projects which can be suggested from the results of this study are also discussed. Introduction In order to successfully exploit the vast potential of processes based on the injection of air or an oxygen-containing gas for the recovery of conventional and heavy oils, it is necessary to understand the nature of the oxidation reactions which are involved. The traditional concept of in situ combustion, which is based on the high-temperature combustion of a coke-like fuel, will not explain the combustion behavior which is observed in many field projects or even in laboratory combustion tube experiments. For this reason, a number of experiments have been developed which concentrate on the global oxidation kinetics. These studies normally involve exposing the crude oil to a programmed rate of heating while in contact with the oxidizing gas. The oxidation kinetics are then observed using effluent gas analysis techniques, and differential thermal techniques such as the differential thermal analysis (DTA) work of Vossoughi et al., the pressurized differential scanning calorimetry (PDSC) studies of Phillips et al., and Belkharchouche and Hughes and the accelerating rate calorimetry (ARC) technique of Yannimaras et al. Previous investigations of the oxidation reactions which occur during in situ combustion processes have shown the existence of at least two temperature ranges over which the oxygen uptake rates are significant. While Kisler and Shallcross have reported that the light (40.2 API) Australian oil which they studied exhibited at least three temperature ranges over which localized maxima in the oxygen uptake rate were observed, the majority of heavy oils for which oxidation data have been reported exhibit only two distinct local maxima in the oxidation rates. For convenience, the two temperature ranges where elevated oxygen uptake or energy generation rates are observed are denoted as the low-temperature oxidation and high-temperature combustion regions. For heavy oils, the range of temperatures associated with the low-temperature oxidation region is roughly from 150 to 300 C, while the high-temperature combustion region generally corresponds to reaction temperatures in the range from 380 to 800 C. The transition temperature range which falls between the temperatures corresponding to the low-temperature oxidation and high-temperature combustion regions is characterized by reduced oxygen uptake and energy generation rates. The lower temperature portion of this transition range in which the oxygen uptake and energy generation rates decrease with increasing temperature is the "negative temperature gradient region". The significance of this region will be more fully explored in the following sections of this paper. Description of Test Procedure Equipment The ramped-temperature oxidation apparatus and test procedures have been described in detail by Moore et al. The apparatus essentially consisted of a plug flow reactor with an inside diameter of 22.1 mm and an inside length of 320.7 mm. The reactor was equipped with five Inconel-sheathed Type K thermocouples which were spaced 50.8 mm apart and inserted radially to the centerline of the core. The reactor was mounted in an aluminum beating block which was equipped with strap heaters. Temperature control and monitoring were achieved using an in-house developed computer-based system. A mass-flow meter controlled the oxidizing gas injection rate and a backpressure control valve maintained the desired operating pressure at the reactor outlet.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2523/35392-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2523/35392-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Victor H. Quintana; Claudio A. Canizares; William Rosehart;In this paper, new optimal power flow (OPF) techniques are proposed based on multiobjective methodologies to optimize active and reactive power dispatch while maximizing voltage security in power systems. The use of interior point methods together with goal programming and linearly combined objective functions as the basic optimization techniques are explained in detail. The effects of minimizing operating costs, minimizing reactive power generation, and/or maximizing loading margins are then compared in both a 57-bus system and a 118-bus system, which are based on IEEE test systems and modeled using standard power flow models. The results obtained using the proposed mixed OPFs are compared and analyzed to suggest possible ways of costing voltage security in power systems.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2003 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2003.810895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 125 citations 125 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2003 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2003.810895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Inderscience Publishers Authors: Peter Bowal;National environmental protection through law is a relatively recent initiative. The written national constitutions of federal countries, such as Canada, did not originally provide for which level of government would enjoy the primary constitutional authority to regulate for environmental protection. Today, a legal jurisdiction must be interpreted and declared from an old imperial document that did not foresee the environment as a discrete subject for regulation. This article describes the experience of how each of two exclusively sovereign levels of government in the same country, the courts and the constitution have combined over the last half century to establish a unique regime of environmental protection in Canada, and how that regime continues to be developed.
International Journa... arrow_drop_down International Journal of Environmental Technology and ManagementArticle . 2003 . Peer-reviewedData sources: CrossrefInternational Journal of Environmental Technology and ManagementJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijetm.2003.004118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Technology and ManagementArticle . 2003 . Peer-reviewedData sources: CrossrefInternational Journal of Environmental Technology and ManagementJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijetm.2003.004118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Inderscience Publishers Authors: Heather L. MacLean; Alex D. Charpentier; Jennifer M. McKellar; Joule A. Bergerson;The life cycle Greenhouse Gas (GHG) emissions associated with the production and use of transportation fuels from conventional and unconventional fossil fuel sources in Canada and the USA are investigated. The studied pathways include reformulated gasoline and low sulphur diesel produced from oil sands, oil shale, coal and natural gas, as well as reference pathways from conventional crude oil. A comparison of Life Cycle Assessments (LCAs) completed for these fuels indicates considerable uncertainty in these emissions, illustrating the need for further LCAs with particular attention to completeness and transparency. Based on the considered studies, only one unconventional pathway has better GHG emissions performance than the conventional pathways: Fischer-Tropsch diesel from natural gas. However, the limitations of the data used here and other factors that may restrict a switch to natural gas must be considered. Furthermore, there are considerable opportunities to reduce emissions from the unconventional pathways.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijgw.2009.027087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijgw.2009.027087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Royal Society of Chemistry (RSC) Authors:Senthil Velan Venkatesan;
Senthil Velan Venkatesan
Senthil Velan Venkatesan in OpenAIREKunal Karan;
Stephen R. Larter;Kunal Karan
Kunal Karan in OpenAIREVenkataraman Thangadurai;
Venkataraman Thangadurai
Venkataraman Thangadurai in OpenAIREdoi: 10.1039/c9se00734b
Membrane-free redox cell with no mass transfer between anode and cathode chambers.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00734b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00734b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Juan Arteaga;
Juan Arteaga
Juan Arteaga in OpenAIREHamidreza Zareipour;
Hamidreza Zareipour
Hamidreza Zareipour in OpenAIREThe goal of this paper is to develop models for estimating the potential profit of a battery storage system that provides multiple services in a competitive electricity market. We assume the size of the battery is small relative to the energy market volume and its actions do not impact the energy market outcomes; thus, it is a price-taker in the energy market. However, considering the relatively smaller market volume for ancillary services, we consider the battery’s strategies to impact the outcomes of the markets for frequency regulation service, spinning reserve, and non-spinning reserve. An optimization model is proposed considering the uncertainties in energy prices, the offers of ancillary services by competitors, and the energy deployment in ancillary services markets. We employ robust and stochastic optimization approaches to account for the different nature of each uncertain variable. The scheduling is done in day-ahead and is later refined closer to real time. Numerical results are provided based on real-life data.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2913818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2913818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:NSERCNSERCAuthors:Edward P.L. Roberts;
Edward P.L. Roberts
Edward P.L. Roberts in OpenAIREMohammad Rahimi;
Mohammad Rahimi;Mohammad Rahimi
Mohammad Rahimi in OpenAIREAsghar Molaei Dehkordi;
Asghar Molaei Dehkordi
Asghar Molaei Dehkordi in OpenAIREAbstract In this article, the novel concept of using magnetic nanofluidic electrolyte for redox flow batteries is demonstrated for the first time. In this regard, the stable magnetic nanofluidic electrolytes are prepared by dispersing magnetic modified multiwalled carbon nanotubes (MMWCNTs) in the positive electrolyte of a polysulfide-iodide redox flow battery at mass concentrations of less than 0.3 g L−1. The electrochemical behavior of magnetic nanofluidic electrolyte was examined using cyclic voltammetry at different mass concentrations of MMWCNTs with a carbon felt electrode. Higher and stable peak current densities were observed at larger mass concentrations of MMWCNTs. A polysulfide-iodide redox flow battery was employed to evaluate the influence of magnetic nanofluidic electrolyte on the battery performance for various mass concentrations, velocities of flowing electrolyte, and current densities using electrochemical impedance spectroscopy, polarization, and galvanostatic charge-discharge experiments. A decrease in ohmic resistance as well as reductions in the charge-transfer and mass-transfer resistances were observed for the magnetic nanofluidic electrolyte compared to those obtained in the absence of MMWCNTs. Adding MMWCNTs to the positive electrolyte at the mass concentration of 0.3 g L−1 results in enhanced performance of the polysulfide-iodide redox flow battery, whereby the peak power density increases by 45% and an energy efficiency of 79.91% was obtained at a current density of 20 mA cm−2. Moreover, high coulombic efficiency close to 100% and stable cycling performance over 200 cycles were achieved using magnetic nanofluidic electrolyte. After 50 cycles, at a current density of 30 mA cm−2, the energy efficiency of the battery operated with magnetic nanofluidic electrolyte remains 10% greater than that obtained in the absence of MMWCNTs. Besides improving the battery performance, MMWCNTs can be separated and recovered using magnetic decantation during electrolyte replacement for redox flow batteries involving high capacity fade and precipitation, which preserves system cost-benefits. The magnetic nanofluidic electrolyte could be applied for different redox solutions using appropriate magnetic nanoscale conductors. This innovative concept opens up a new opportunity to develop the next generation of high-performance and low-cost flow batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2020.137687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2020.137687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Francesco Guarino;
Francesco Guarino
Francesco Guarino in OpenAIRESonia Longo;
Sonia Longo
Sonia Longo in OpenAIRECaroline Hachem Vermette;
Maurizio Cellura; +1 AuthorsCaroline Hachem Vermette
Caroline Hachem Vermette in OpenAIREFrancesco Guarino;
Francesco Guarino
Francesco Guarino in OpenAIRESonia Longo;
Sonia Longo
Sonia Longo in OpenAIRECaroline Hachem Vermette;
Maurizio Cellura; Vincenzo La Rocca;Caroline Hachem Vermette
Caroline Hachem Vermette in OpenAIREAbstract This study presents the comparison of the life cycle performance of two different urban energy systems, applied to a large mixed-use community, in Calgary (Canada). The two systems investigated consist of an energy efficient conventional system, using heat pumps for heating, cooling and domestic hot water; the second design widely deploys solar thermal panels coupled to district heating infrastructure and a borehole seasonal thermal storage. The analysis is based on the Life Cycle Assessment methodology and includes the stages of raw materials and energy supply, system manufacturing, use stage of the systems, generation and use of energy on-site, maintenance and components’ substitution, and explores the performances of the systems on a life cycle perspective thanks to the use of different indicators of ILCD 2011 Midpoint impact assessment method. The solar-based system, performs better than the conventional system from the point of view of all indicators used in the study. In detail, ozone depletion and land use can be reduced of about 79.7% and 27% respectively, while the remaining impact categories show a reduction of about 39–56%. These results can be extended to other similar systems operating under similar weather constraints, energy systems included in the operation, thermal loads requirements. Moreover, the study is based on the premises and assumptions of real documented case studies in Canada, thus further reinforcing the solidity of the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:NSERCNSERCAuthors: Jennifer H. Pauls; C. Jim Lim;Ehsan Mostafavi;
Nader Mahinpey;Ehsan Mostafavi
Ehsan Mostafavi in OpenAIREdoi: 10.1002/cjce.22540
AbstractOver the last few decades, research on the abatement of carbon dioxide (CO2) gas has gained momentum, due to its increasing atmospheric levels. This study investigated high‐temperature steam‐only gasification of woody biomass for the production of high‐purity hydrogen integrated with CO2 capture in a moving‐bed gasifier. Extensive process modelling and simulation were performed using the superior solid handling features of the Aspen Plus process simulator software. After validating the model with experimental data from a demonstration plant available in the open literature, a reversible carbonation‐calcination reaction of calcium oxide (CaO) with CO2 was added to the system. Sensitivity analyses were conducted to verify the predictive accuracy of the model. The effects of steam‐to‐carbon (S/C) ratio on the resulting gas composition were thoroughly studied to delineate the complex process of gasification. Beyond the mitigation of CO2 emissions, the introduction of a CaO‐based sorbent in the process simulation significantly enhanced hydrogen production by simultaneously promoting the forward water‐gas shift reaction and reducing tars through increased tar‐cracking reactions. The results show that hydrogen of a higher purity was produced with the inclusion of dry‐sorption CO2 capture in the gasification process. Moreover, the addition of the sorbent increased the higher heating values (HHV) by 3 times and improved the cold gas efficiency by 34 %.
The Canadian Journal... arrow_drop_down The Canadian Journal of Chemical EngineeringArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cjce.22540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Canadian Journal... arrow_drop_down The Canadian Journal of Chemical EngineeringArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cjce.22540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu