- home
- Search
- Energy Research
- 13. Climate action
- AU
- MY
- Middlesex University
- Energy Research
- 13. Climate action
- AU
- MY
- Middlesex University
description Publicationkeyboard_double_arrow_right Article , Journal 2007 Australia, ChilePublisher:Elsevier BV Anthony J. McMichael; John Powles; Ricardo Uauy; Ricardo Uauy; Colin D. Butler;Food provides energy and nutrients, but its acquisition requires energy expenditure. In post-hunter-gatherer societies, extra-somatic energy has greatly expanded and intensified the catching, gathering, and production of food. Modern relations between energy, food, and health are very complex, raising serious, high-level policy challenges. Together with persistent widespread under-nutrition, over-nutrition (and sedentarism) is causing obesity and associated serious health consequences. Worldwide, agricultural activity, especially livestock production, accounts for about a fifth of total greenhouse-gas emissions, thus contributing to climate change and its adverse health consequences, including the threat to food yields in many regions. Particular policy attention should be paid to the health risks posed by the rapid worldwide growth in meat consumption, both by exacerbating climate change and by directly contributing to certain diseases. To prevent increased greenhouse-gas emissions from this production sector, both the average worldwide consumption level of animal products and the intensity of emissions from livestock production must be reduced. An international contraction and convergence strategy offers a feasible route to such a goal. The current global average meat consumption is 100 g per person per day, with about a ten-fold variation between high-consuming and low-consuming populations. 90 g per day is proposed as a working global target, shared more evenly, with not more than 50 g per day coming from red meat from ruminants (ie, cattle, sheep, goats, and other digastric grazers).
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 976 citations 976 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:UCL Press Dawud Ansari; Regine Schönenberg; Melissa Abud; Laura Becerra; Wassim Brahim; Javier Castiblanco; Anne Cristina de la Vega-Leinert; Nigel Dudley; Michael Dunlop; Carolina Figueroa; Óscar Guevara; Philipp Hauser; Hannes Hobbie; Mostafa Ali Reza Hossain; Jean Hugé; Luc Janssens de Bisthoven; Hilde Keunen; Claudia Múnera‐Roldán; Jan Petzold; Anne-Julie Rochette; Matthew Schmidt; Charlotte Schumann; Sayanti Sengupta; Susanne Stoll‐Kleemann; Lorrae C van Kerkhoff; Maarten P. M. Vanhove; Carina Wyborn;Climate change and biodiversity loss trigger policies targeting and impacting local communities worldwide. However, research and policy implementation often fail to sufficiently consider community responses and to involve them. We present the results of a collective self-assessment exercise for eight case studies of communications with regard to climate change or biodiversity loss between project teams and local communities. We develop eight indicators of good stakeholder communication, reflecting the scope of Verran’s (2002) concept of postcolonial moments as a communicative utopia. We demonstrate that applying our indicators can enhance communication and enable community responses. However, we discover a divergence between timing, complexity and (introspective) effort. Three cases qualify for postcolonial moments, but scrutinising power relations and genuine knowledge co-production remain rare. While we verify the potency of various instruments for deconstructing science, their sophistication cannot substitute trust building and epistemic/transdisciplinary awareness. Lastly, we consider that reforming inadequate funding policies helps improving the work in and with local communities.
UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, United Kingdom, United Kingdom, France, France, United Kingdom, United KingdomPublisher:American Geophysical Union (AGU) Funded by:UKRI | FACCE MACSUR Knowledge Hu...UKRI| FACCE MACSUR Knowledge Hub Crop modellingLaixiang Sun; Laixiang Sun; Laixiang Sun; Bing Chen; Tingting Fan; Lindsay Lee; Sat Ghosh; Kuishuang Feng; Ann-Kristin Koehler; Yao Gao; Andrew J. Challinor; Andrew J. Challinor; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; James E. M. Watson; Yan Yin; Huiyi Yang; Huiyi Yang; S. Dobbie;AbstractGeoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop‐climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 60 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Authors: Barnett, Adrian; Hajat, Shakoor; Gasparrini, Antonio; Rocklov, Joacim;pmid: 22226140
Extreme cold and heat waves, characterized by a number of cold or hot days in succession, place a strain on people's cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987-2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave's timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95-99 percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for extreme temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2011.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 223 citations 223 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2011.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, United Kingdom, Belgium, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NIH | Quantifying Heterogeneiti..., NIH | An Approach for Estimatin..., WT | Estimating the burden of ... +2 projectsNIH| Quantifying Heterogeneities in Dengue Virus Transmission Dynamics ,NIH| An Approach for Estimating Foodborne Illnesses and Assessing Risk Factors ,WT| Estimating the burden of dengue, chikungunya and Zika in Latin America ,NIH| Research Training in Pediatric Emergency Medicine ,NIH| A Platform for Modeling the Global Impact of Climate Change on Infectious DiseaseLaurie B. Marczak; Thomas Jaenisch; Robert Reiner; Moritz U. G. Kraemer; Moritz U. G. Kraemer; Moritz U. G. Kraemer; Simon I. Hay; Sarah E Ray; Freya M Shearer; Peter A. Jones; Raman Velayudhan; Nick Golding; Shreya Shirude; Lucas Earl; William Wint; Kimberly B. Johnson; David M. Pigott; Marius Gilbert; Nicole Davis Weaver; Oliver J. Brady; Thomas W. Scott; Jane P. Messina;pmid: 31182801
pmc: PMC6784886
AbstractDengue is a mosquito-borne viral infection that has spread throughout the tropical world over the past 60 years and now affects over half the world’s population. The geographical range of dengue is expected to further expand due to ongoing global phenomena including climate change and urbanization. We applied statistical mapping techniques to the most extensive database of case locations to date to predict global environmental suitability for the virus as of 2015. We then made use of climate, population and socioeconomic projections for the years 2020, 2050 and 2080 to project future changes in virus suitability and human population at risk. This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability. Our projections provide a key missing piece of evidence for the changing global threat of vector-borne disease and will help decision-makers worldwide to better prepare for and respond to future changes in dengue risk.
CORE arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/245925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-019-0476-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 729 citations 729 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 9visibility views 9 download downloads 569 Powered bymore_vert CORE arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/245925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-019-0476-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, AustraliaPublisher:Elsevier BV Rui Ma; Shuang Zhong; Marco Morabito; Shakoor Hajat; Zhiwei Xu; Yiling He; Junzhe Bao; Rongrong Sheng; Changchang Li; Chuandong Fu; Cunrui Huang;pmid: 30798225
Climate change has exacerbated the health effects of high ambient temperatures on occupational health and safety; however, to what extent heat stress can induce workplace injuries and economic costs is poorly studied. This study aimed to quantify the attributable fractions of injury claims and subsequent insurance payouts using data from work-related injury insurance system in Guangzhou, China.Individual workers' injury claims data were collected for the period of 2011-2012, including demographic characteristics and work-related information. Daily maximum wet bulb globe temperature (WBGT, °C) was calculated from meteorological data. To examine the association between WBGT index and work-related injury, we fit a quasi-Poisson regression with distributed lag non-linear model. Then we calculated the numbers of injury claims and costs of insurance compensations attributable to days with WBGT above the heat stress limit according to the national occupational health standards.There were 9550 work-related injury claims, resulting in an insurance payout of 282.3 million Chinese Yuan. The risks of injury claims increased with rising WBGT. 4.8% (95% eCI: 2.9%-6.9%) of work-related injuries and 4.1% (95% eCI: 0.2%-7.7%) of work-related injury insurance payouts were attributed to heat exposure for WBGT threshold above the heat stress limit. Male workers, those in small enterprises and with low educational attainment were especially sensitive to the effects of heat exposure.Heat stress can contribute to higher risk of work-related injury and substantial economic costs. Quantified the impacts of injuries and related economic costs should be considered to develop targeted preventive measures in the context of climate change.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Oxford University Press (OUP) Authors: Brunner, Eric J; Jones, Peter J S; Bartley, Mel; Friel, Sharon;Health recommendations advocating increased fish consumption need to be placed in the context of the potential collapse of global marine capture fisheries.Literature overview.In economically developed countries, official healthy eating advice is to eat more fish, particularly that rich in omega-3 oils. In many less economically developed countries, fish is a key human health asset, contributing >20% of animal protein intake for 2.6 billion people. Marine ecologists predict on current trends that fish stocks are set to collapse in 40 years, and propose increased restrictions on fishing, including no-take zones, in order to restore marine ecosystem health. Production of fishmeal for aquaculture and other non-food uses (22 MT in 2003) appears to be unsustainable. Differences in fish consumption probably contribute to within-country and international health inequalities. Such inequalities are likely to increase if fish stocks continue to decline, while increasing demand for fish will accelerate declines in fish stocks and the health of marine ecosystems.Urgent national and international action is necessary to address the tensions arising from increasing human demand for fish and seafood, and rapidly declining marine ecosystem health.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyn157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyn157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bing Xue; Ran Xing; Xingpeng Chen; Lu Jiang; Lu Jiang; Lu Jiang;Abstract Energy consumption in the household sector has become an important issue in China's energy consumption and an important unit of China's clean energy transformation. Currently, the potential air pollution, carbon emissions and health risks caused by energy consumption in many areas cannot be ignored, and refined and regionalized index-based research data necessary to support decision making are lacking. Based on household-level survey data collected from Qinghai Province, China, we estimated greenhouse gas (GHG) and air pollutant emissions from spatial perspectives, including household energy consumption in pastoral, agropastoral, and agricultural zones. The findings suggest that the total annual GHG and pollutant emissions per capita in the area was 2296.32 kg per year. The highest amount of pollutants was emitted from the pastoral zones, followed by the agropastoral and agricultural zones. CO2 is the primary GHG emitted by household energy consumption. Dung burning was the cause of the high PM2.5 emissions in the pastoral areas, while the use of coal was the primary cause of GHG and pollutant emissions in the agropastoral and agricultural zones. These findings highlight the need to integrate household energy policies with rural development to enable a complete transition towards cleaner fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United StatesPublisher:Frontiers Media SA Publicly fundedFunded by:NSF | Collaborative Research: H..., NSF | RAPID: Recovering at-ris..., NSF | Collaborative Research: H... +4 projectsNSF| Collaborative Research: Human and non-human influences on species biodiversity in an island ecosystem ,NSF| RAPID: Recovering at-risk Holocene fossils to test phylogenetic & ecological hypotheses for extinction in crocodiles (Crocodylus) & giant tortoises (Aldabrachelys) of Mada ,NSF| Collaborative Research: Human and non-human influences on species biodiversity in an island ecosystem ,IRC ,NSF| Collaborative Research: P2C2--Madagascar Caves and Paleoclimate (MADCAP), Investigating Climate Variability in the Southern Hemisphere of the Western Indian Ocean ,NSF| Collaborative Research: P2C2--Madagascar Caves and Paleoclimate (MADCAP), Investigating Climate Variability in the Southern Hemisphere of the Western Indian Ocean ,NSF| Collaborative Research: Human and non-human influences on species biodiversity in an island ecosystemLaurie R. Godfrey; Brooke E. Crowley; Brooke E. Crowley; Kathleen M. Muldoon; Stephen J. Burns; Nick Scroxton; Zachary S. Klukkert; Lovasoa Ranivoharimanana; Jamie Alumbaugh; Matthew Borths; Ryan Dart; Peterson Faina; Steven M. Goodman; Steven M. Goodman; Isaac J. Gutierrez; James P. Hansford; James P. Hansford; Evon R. Hekkala; Evon R. Hekkala; Christopher W. Kinsley; Phillip Lehman; Phillip Lehman; Margaret E. Lewis; David McGee; Ventura R. Pérez; Noromamy J. Rahantaharivao; Mamy Rakotoarijaona; Harimanjaka A. M. Rasolonjatovo; Karen E. Samonds; Samuel T. Turvey; Natalie Vasey; Patrick Widmann; Patrick Widmann;handle: 1721.1/148111
Madagascar experienced a major faunal turnover near the end of the first millenium CE that particularly affected terrestrial, large-bodied vertebrate species. Teasing apart the relative impacts of people and climate on this event requires a focus on regional records with good chronological control. These records may document coeval changes in rainfall, faunal composition, and human activities. Here we present new paleontological and paleoclimatological data from southwestern Madagascar, the driest part of the island today. We collected over 1500 subfossil bones from deposits at a coastal site called Antsirafaly and from both flooded and dry cave deposits at Tsimanampesotse National Park. We built a chronology of Late Holocene changes in faunal assemblages based on 65 radiocarbon-dated specimens and subfossil associations. We collected stalagmites primarily within Tsimanampesotse but also at two additional locations in southern Madagascar. These provided information regarding hydroclimate variability over the past 120,000 years. Prior research has supported a primary role for drought (rather than humans) in triggering faunal turnover at Tsimanampesotse. This is based on evidence of: (1) a large freshwater ecosystem west of what is now the hypersaline Lake Tsimanampesotse, which supported freshwater mollusks and waterfowl (including animals that could not survive on resources offered by the hypersaline lake today); (2) abundant now-extinct terrestrial vertebrates; (3) regional decline or disappearance of certain tree species; and (4) scant local human presence. Our new data allow us to document the hydroclimate of the subarid southwest during the Holocene, as well as shifts in faunal composition (including local extirpations, large-vertebrate population collapse, and the appearance of introduced species). These records affirm that climate alone cannot have produced the observed vertebrate turnover in the southwest. Human activity, including the introduction of cattle, as well as associated changes in habitat exploitation, also played an important role.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefPortland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.742203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefPortland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.742203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 Australia, ChilePublisher:Elsevier BV Anthony J. McMichael; John Powles; Ricardo Uauy; Ricardo Uauy; Colin D. Butler;Food provides energy and nutrients, but its acquisition requires energy expenditure. In post-hunter-gatherer societies, extra-somatic energy has greatly expanded and intensified the catching, gathering, and production of food. Modern relations between energy, food, and health are very complex, raising serious, high-level policy challenges. Together with persistent widespread under-nutrition, over-nutrition (and sedentarism) is causing obesity and associated serious health consequences. Worldwide, agricultural activity, especially livestock production, accounts for about a fifth of total greenhouse-gas emissions, thus contributing to climate change and its adverse health consequences, including the threat to food yields in many regions. Particular policy attention should be paid to the health risks posed by the rapid worldwide growth in meat consumption, both by exacerbating climate change and by directly contributing to certain diseases. To prevent increased greenhouse-gas emissions from this production sector, both the average worldwide consumption level of animal products and the intensity of emissions from livestock production must be reduced. An international contraction and convergence strategy offers a feasible route to such a goal. The current global average meat consumption is 100 g per person per day, with about a ten-fold variation between high-consuming and low-consuming populations. 90 g per day is proposed as a working global target, shared more evenly, with not more than 50 g per day coming from red meat from ruminants (ie, cattle, sheep, goats, and other digastric grazers).
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 976 citations 976 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38056Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2007License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(07)61256-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:UCL Press Dawud Ansari; Regine Schönenberg; Melissa Abud; Laura Becerra; Wassim Brahim; Javier Castiblanco; Anne Cristina de la Vega-Leinert; Nigel Dudley; Michael Dunlop; Carolina Figueroa; Óscar Guevara; Philipp Hauser; Hannes Hobbie; Mostafa Ali Reza Hossain; Jean Hugé; Luc Janssens de Bisthoven; Hilde Keunen; Claudia Múnera‐Roldán; Jan Petzold; Anne-Julie Rochette; Matthew Schmidt; Charlotte Schumann; Sayanti Sengupta; Susanne Stoll‐Kleemann; Lorrae C van Kerkhoff; Maarten P. M. Vanhove; Carina Wyborn;Climate change and biodiversity loss trigger policies targeting and impacting local communities worldwide. However, research and policy implementation often fail to sufficiently consider community responses and to involve them. We present the results of a collective self-assessment exercise for eight case studies of communications with regard to climate change or biodiversity loss between project teams and local communities. We develop eight indicators of good stakeholder communication, reflecting the scope of Verran’s (2002) concept of postcolonial moments as a communicative utopia. We demonstrate that applying our indicators can enhance communication and enable community responses. However, we discover a divergence between timing, complexity and (introspective) effort. Three cases qualify for postcolonial moments, but scrutinising power relations and genuine knowledge co-production remain rare. While we verify the potency of various instruments for deconstructing science, their sophistication cannot substitute trust building and epistemic/transdisciplinary awareness. Lastly, we consider that reforming inadequate funding policies helps improving the work in and with local communities.
UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, United Kingdom, United Kingdom, France, France, United Kingdom, United KingdomPublisher:American Geophysical Union (AGU) Funded by:UKRI | FACCE MACSUR Knowledge Hu...UKRI| FACCE MACSUR Knowledge Hub Crop modellingLaixiang Sun; Laixiang Sun; Laixiang Sun; Bing Chen; Tingting Fan; Lindsay Lee; Sat Ghosh; Kuishuang Feng; Ann-Kristin Koehler; Yao Gao; Andrew J. Challinor; Andrew J. Challinor; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; James E. M. Watson; Yan Yin; Huiyi Yang; Huiyi Yang; S. Dobbie;AbstractGeoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop‐climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 60 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Authors: Barnett, Adrian; Hajat, Shakoor; Gasparrini, Antonio; Rocklov, Joacim;pmid: 22226140
Extreme cold and heat waves, characterized by a number of cold or hot days in succession, place a strain on people's cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987-2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave's timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95-99 percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for extreme temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2011.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 223 citations 223 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2011.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, United Kingdom, Belgium, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NIH | Quantifying Heterogeneiti..., NIH | An Approach for Estimatin..., WT | Estimating the burden of ... +2 projectsNIH| Quantifying Heterogeneities in Dengue Virus Transmission Dynamics ,NIH| An Approach for Estimating Foodborne Illnesses and Assessing Risk Factors ,WT| Estimating the burden of dengue, chikungunya and Zika in Latin America ,NIH| Research Training in Pediatric Emergency Medicine ,NIH| A Platform for Modeling the Global Impact of Climate Change on Infectious DiseaseLaurie B. Marczak; Thomas Jaenisch; Robert Reiner; Moritz U. G. Kraemer; Moritz U. G. Kraemer; Moritz U. G. Kraemer; Simon I. Hay; Sarah E Ray; Freya M Shearer; Peter A. Jones; Raman Velayudhan; Nick Golding; Shreya Shirude; Lucas Earl; William Wint; Kimberly B. Johnson; David M. Pigott; Marius Gilbert; Nicole Davis Weaver; Oliver J. Brady; Thomas W. Scott; Jane P. Messina;pmid: 31182801
pmc: PMC6784886
AbstractDengue is a mosquito-borne viral infection that has spread throughout the tropical world over the past 60 years and now affects over half the world’s population. The geographical range of dengue is expected to further expand due to ongoing global phenomena including climate change and urbanization. We applied statistical mapping techniques to the most extensive database of case locations to date to predict global environmental suitability for the virus as of 2015. We then made use of climate, population and socioeconomic projections for the years 2020, 2050 and 2080 to project future changes in virus suitability and human population at risk. This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability. Our projections provide a key missing piece of evidence for the changing global threat of vector-borne disease and will help decision-makers worldwide to better prepare for and respond to future changes in dengue risk.
CORE arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/245925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-019-0476-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 729 citations 729 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 9visibility views 9 download downloads 569 Powered bymore_vert CORE arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/245925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-019-0476-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, AustraliaPublisher:Elsevier BV Rui Ma; Shuang Zhong; Marco Morabito; Shakoor Hajat; Zhiwei Xu; Yiling He; Junzhe Bao; Rongrong Sheng; Changchang Li; Chuandong Fu; Cunrui Huang;pmid: 30798225
Climate change has exacerbated the health effects of high ambient temperatures on occupational health and safety; however, to what extent heat stress can induce workplace injuries and economic costs is poorly studied. This study aimed to quantify the attributable fractions of injury claims and subsequent insurance payouts using data from work-related injury insurance system in Guangzhou, China.Individual workers' injury claims data were collected for the period of 2011-2012, including demographic characteristics and work-related information. Daily maximum wet bulb globe temperature (WBGT, °C) was calculated from meteorological data. To examine the association between WBGT index and work-related injury, we fit a quasi-Poisson regression with distributed lag non-linear model. Then we calculated the numbers of injury claims and costs of insurance compensations attributable to days with WBGT above the heat stress limit according to the national occupational health standards.There were 9550 work-related injury claims, resulting in an insurance payout of 282.3 million Chinese Yuan. The risks of injury claims increased with rising WBGT. 4.8% (95% eCI: 2.9%-6.9%) of work-related injuries and 4.1% (95% eCI: 0.2%-7.7%) of work-related injury insurance payouts were attributed to heat exposure for WBGT threshold above the heat stress limit. Male workers, those in small enterprises and with low educational attainment were especially sensitive to the effects of heat exposure.Heat stress can contribute to higher risk of work-related injury and substantial economic costs. Quantified the impacts of injuries and related economic costs should be considered to develop targeted preventive measures in the context of climate change.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Oxford University Press (OUP) Authors: Brunner, Eric J; Jones, Peter J S; Bartley, Mel; Friel, Sharon;Health recommendations advocating increased fish consumption need to be placed in the context of the potential collapse of global marine capture fisheries.Literature overview.In economically developed countries, official healthy eating advice is to eat more fish, particularly that rich in omega-3 oils. In many less economically developed countries, fish is a key human health asset, contributing >20% of animal protein intake for 2.6 billion people. Marine ecologists predict on current trends that fish stocks are set to collapse in 40 years, and propose increased restrictions on fishing, including no-take zones, in order to restore marine ecosystem health. Production of fishmeal for aquaculture and other non-food uses (22 MT in 2003) appears to be unsustainable. Differences in fish consumption probably contribute to within-country and international health inequalities. Such inequalities are likely to increase if fish stocks continue to decline, while increasing demand for fish will accelerate declines in fish stocks and the health of marine ecosystems.Urgent national and international action is necessary to address the tensions arising from increasing human demand for fish and seafood, and rapidly declining marine ecosystem health.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyn157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyn157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bing Xue; Ran Xing; Xingpeng Chen; Lu Jiang; Lu Jiang; Lu Jiang;Abstract Energy consumption in the household sector has become an important issue in China's energy consumption and an important unit of China's clean energy transformation. Currently, the potential air pollution, carbon emissions and health risks caused by energy consumption in many areas cannot be ignored, and refined and regionalized index-based research data necessary to support decision making are lacking. Based on household-level survey data collected from Qinghai Province, China, we estimated greenhouse gas (GHG) and air pollutant emissions from spatial perspectives, including household energy consumption in pastoral, agropastoral, and agricultural zones. The findings suggest that the total annual GHG and pollutant emissions per capita in the area was 2296.32 kg per year. The highest amount of pollutants was emitted from the pastoral zones, followed by the agropastoral and agricultural zones. CO2 is the primary GHG emitted by household energy consumption. Dung burning was the cause of the high PM2.5 emissions in the pastoral areas, while the use of coal was the primary cause of GHG and pollutant emissions in the agropastoral and agricultural zones. These findings highlight the need to integrate household energy policies with rural development to enable a complete transition towards cleaner fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United StatesPublisher:Frontiers Media SA Publicly fundedFunded by:NSF | Collaborative Research: H..., NSF | RAPID: Recovering at-ris..., NSF | Collaborative Research: H... +4 projectsNSF| Collaborative Research: Human and non-human influences on species biodiversity in an island ecosystem ,NSF| RAPID: Recovering at-risk Holocene fossils to test phylogenetic & ecological hypotheses for extinction in crocodiles (Crocodylus) & giant tortoises (Aldabrachelys) of Mada ,NSF| Collaborative Research: Human and non-human influences on species biodiversity in an island ecosystem ,IRC ,NSF| Collaborative Research: P2C2--Madagascar Caves and Paleoclimate (MADCAP), Investigating Climate Variability in the Southern Hemisphere of the Western Indian Ocean ,NSF| Collaborative Research: P2C2--Madagascar Caves and Paleoclimate (MADCAP), Investigating Climate Variability in the Southern Hemisphere of the Western Indian Ocean ,NSF| Collaborative Research: Human and non-human influences on species biodiversity in an island ecosystemLaurie R. Godfrey; Brooke E. Crowley; Brooke E. Crowley; Kathleen M. Muldoon; Stephen J. Burns; Nick Scroxton; Zachary S. Klukkert; Lovasoa Ranivoharimanana; Jamie Alumbaugh; Matthew Borths; Ryan Dart; Peterson Faina; Steven M. Goodman; Steven M. Goodman; Isaac J. Gutierrez; James P. Hansford; James P. Hansford; Evon R. Hekkala; Evon R. Hekkala; Christopher W. Kinsley; Phillip Lehman; Phillip Lehman; Margaret E. Lewis; David McGee; Ventura R. Pérez; Noromamy J. Rahantaharivao; Mamy Rakotoarijaona; Harimanjaka A. M. Rasolonjatovo; Karen E. Samonds; Samuel T. Turvey; Natalie Vasey; Patrick Widmann; Patrick Widmann;handle: 1721.1/148111
Madagascar experienced a major faunal turnover near the end of the first millenium CE that particularly affected terrestrial, large-bodied vertebrate species. Teasing apart the relative impacts of people and climate on this event requires a focus on regional records with good chronological control. These records may document coeval changes in rainfall, faunal composition, and human activities. Here we present new paleontological and paleoclimatological data from southwestern Madagascar, the driest part of the island today. We collected over 1500 subfossil bones from deposits at a coastal site called Antsirafaly and from both flooded and dry cave deposits at Tsimanampesotse National Park. We built a chronology of Late Holocene changes in faunal assemblages based on 65 radiocarbon-dated specimens and subfossil associations. We collected stalagmites primarily within Tsimanampesotse but also at two additional locations in southern Madagascar. These provided information regarding hydroclimate variability over the past 120,000 years. Prior research has supported a primary role for drought (rather than humans) in triggering faunal turnover at Tsimanampesotse. This is based on evidence of: (1) a large freshwater ecosystem west of what is now the hypersaline Lake Tsimanampesotse, which supported freshwater mollusks and waterfowl (including animals that could not survive on resources offered by the hypersaline lake today); (2) abundant now-extinct terrestrial vertebrates; (3) regional decline or disappearance of certain tree species; and (4) scant local human presence. Our new data allow us to document the hydroclimate of the subarid southwest during the Holocene, as well as shifts in faunal composition (including local extirpations, large-vertebrate population collapse, and the appearance of introduced species). These records affirm that climate alone cannot have produced the observed vertebrate turnover in the southwest. Human activity, including the introduction of cattle, as well as associated changes in habitat exploitation, also played an important role.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefPortland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.742203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefPortland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.742203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu