- home
- Search
- Energy Research
- biological sciences
- 15. Life on land
- 11. Sustainability
- NL
- FI
- Energy Research
- biological sciences
- 15. Life on land
- 11. Sustainability
- NL
- FI
description Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Helena Korpelainen; Qingquan Han; Qingquan Han; Zhijun Li; Chunyang Li; Jianxun Luo;handle: 10138/307840
Abstract In this study, intergeneric grafting was employed between Populus cathayana and Salix rehderiana to investigate the grafting compatibility of the two Salicaceae plants and to reveal whether grafting can improve their drought resistance. Under different grafting combinations (P. cathayana scion with P. cathayana rootstock, P/P; P. cathayana scion with S. rehderiana rootstock, P/S; S. rehderiana scion with S. rehderiana rootstock, S/S; and S. rehderiana scion with P. cathayana rootstock, S/P), the survival and growth rate, biomass accumulation and allocation, photosynthetic traits, carbon isotope composition (δ13C), relative water content (RWC) and non-structural carbohydrates (NSCs) were measured. The results showed that the grafting compatibility between P. cathayana and S. rehderiana was very high, as the survival rates ranged from 76% to 100% under different grafting combinations. Drought significantly decreased growth, biomass accumulation, photosynthetic pigment contents, net photosynthesis rates (Pn) and RWC, and increased δ13C in all grafting combinations. Under drought stress, biomass accumulation, total chlorophyll, transpiration rate (E) and Pn were higher in P/P and P/S than in S/S and S/P. Compared with P/P, the growth rate, biomass accumulation, root/aboveground ratio (R/A ratio), carotenoid, RWC, starch and total soluble sugar (TSS) of P/S were less affected by drought. The height growth rate (GRH), R/A ratio, carotenoid, chlorophyll a, total chlorophyll, WUEi and TSS of S/P were lower than those of S/S under water-limited conditions. Moreover, a principal component analysis indicated that P/S and S/S had higher drought resistance than P/P and S/P under water deficits. The used method allows combining specific advantageous traits from P. cathayana and S. rehderiana, which may be a highly useful tool to enhance drought resistance in the cultivation of Salicaceae plants.
Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Helena Korpelainen; Qingquan Han; Qingquan Han; Zhijun Li; Chunyang Li; Jianxun Luo;handle: 10138/307840
Abstract In this study, intergeneric grafting was employed between Populus cathayana and Salix rehderiana to investigate the grafting compatibility of the two Salicaceae plants and to reveal whether grafting can improve their drought resistance. Under different grafting combinations (P. cathayana scion with P. cathayana rootstock, P/P; P. cathayana scion with S. rehderiana rootstock, P/S; S. rehderiana scion with S. rehderiana rootstock, S/S; and S. rehderiana scion with P. cathayana rootstock, S/P), the survival and growth rate, biomass accumulation and allocation, photosynthetic traits, carbon isotope composition (δ13C), relative water content (RWC) and non-structural carbohydrates (NSCs) were measured. The results showed that the grafting compatibility between P. cathayana and S. rehderiana was very high, as the survival rates ranged from 76% to 100% under different grafting combinations. Drought significantly decreased growth, biomass accumulation, photosynthetic pigment contents, net photosynthesis rates (Pn) and RWC, and increased δ13C in all grafting combinations. Under drought stress, biomass accumulation, total chlorophyll, transpiration rate (E) and Pn were higher in P/P and P/S than in S/S and S/P. Compared with P/P, the growth rate, biomass accumulation, root/aboveground ratio (R/A ratio), carotenoid, RWC, starch and total soluble sugar (TSS) of P/S were less affected by drought. The height growth rate (GRH), R/A ratio, carotenoid, chlorophyll a, total chlorophyll, WUEi and TSS of S/P were lower than those of S/S under water-limited conditions. Moreover, a principal component analysis indicated that P/S and S/S had higher drought resistance than P/P and S/P under water deficits. The used method allows combining specific advantageous traits from P. cathayana and S. rehderiana, which may be a highly useful tool to enhance drought resistance in the cultivation of Salicaceae plants.
Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Henricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; +1 AuthorsHenricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; Martinus Jacobus Antonius Weterings;It has long been established that mature forests are mosaics of patches in different development phases but it has seldom explicitly been taken into account in ecological studies. We demonstrate here that these development phases, which are related to the population dynamics of trees, play an important role in the distribution of fauna based on observations on frugivorous birds. In an area close to the Calakmul Biosphere Reserve in Mexico, we studied the abundance of large forest bird species in relation to forest development phases, with a methodology that seems promising for ecological diagnosis and prognosis in forest management planning. Fine-scale forest mapping and bird counts were carried out in two block-transects of 40 m x 3000 m. Tree sampling in a sub-transect was used to generate population characteristics of trees, Large bird species preferred mature or senescent forest patches, whereas relatively young, growing forest patches were avoided. Important large tree species such as Manilkara zapota, Thouinia paucidentata, Guaiacum sanctum and Esenbeckia pentaphylla, characteristic of older forest patches, showed skewed size distributions indicating stress or overexploitation. The population of M. zapota, a key fruiting species that accounted for 26.5% of the total woody biomass, was most heavily affected by stress. A future collapse in the population of M. zapota, a decrease of the total area of older forest, and a decline in the abundance of large birds is likely if stress on the system continues at this level. (C) 2008 Elsevier B.V. All rights reserved.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Henricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; +1 AuthorsHenricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; Martinus Jacobus Antonius Weterings;It has long been established that mature forests are mosaics of patches in different development phases but it has seldom explicitly been taken into account in ecological studies. We demonstrate here that these development phases, which are related to the population dynamics of trees, play an important role in the distribution of fauna based on observations on frugivorous birds. In an area close to the Calakmul Biosphere Reserve in Mexico, we studied the abundance of large forest bird species in relation to forest development phases, with a methodology that seems promising for ecological diagnosis and prognosis in forest management planning. Fine-scale forest mapping and bird counts were carried out in two block-transects of 40 m x 3000 m. Tree sampling in a sub-transect was used to generate population characteristics of trees, Large bird species preferred mature or senescent forest patches, whereas relatively young, growing forest patches were avoided. Important large tree species such as Manilkara zapota, Thouinia paucidentata, Guaiacum sanctum and Esenbeckia pentaphylla, characteristic of older forest patches, showed skewed size distributions indicating stress or overexploitation. The population of M. zapota, a key fruiting species that accounted for 26.5% of the total woody biomass, was most heavily affected by stress. A future collapse in the population of M. zapota, a decrease of the total area of older forest, and a decline in the abundance of large birds is likely if stress on the system continues at this level. (C) 2008 Elsevier B.V. All rights reserved.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Wiley Funded by:EC | ANTARESEC| ANTARESVasco Veiga Branco; Marija Miličić; Marija Miličić; Pedro Cardoso; Snežana Popov;AbstractWhile several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Wiley Funded by:EC | ANTARESEC| ANTARESVasco Veiga Branco; Marija Miličić; Marija Miličić; Pedro Cardoso; Snežana Popov;AbstractWhile several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:Public Library of Science (PLoS) J.M.H. Verspagen; D.B. van de Waal; J.F. Finke; P.M. Visser; E. van Donk; J. Huisman;pmid: 25119996
pmc: PMC4132121
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:Public Library of Science (PLoS) J.M.H. Verspagen; D.B. van de Waal; J.F. Finke; P.M. Visser; E. van Donk; J. Huisman;pmid: 25119996
pmc: PMC4132121
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:NSERCNSERCNiclas Vallin; Anna Qvarnström; David Wheatcroft; Päivi M. Sirkiä; Päivi M. Sirkiä; S. Eryn McFarlane; Murielle Ålund; Jakub Rybinski;doi: 10.1111/evo.13019
pmid: 27464950
Competition-driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on-going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition-driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future "voluntarily" altered immigration patterns and possibly strengthened habitat isolation through reinforcement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:NSERCNSERCNiclas Vallin; Anna Qvarnström; David Wheatcroft; Päivi M. Sirkiä; Päivi M. Sirkiä; S. Eryn McFarlane; Murielle Ålund; Jakub Rybinski;doi: 10.1111/evo.13019
pmid: 27464950
Competition-driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on-going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition-driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future "voluntarily" altered immigration patterns and possibly strengthened habitat isolation through reinforcement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Tomi P. Luoto; Tomi P. Luoto; Liisa Nevalainen; Marttiina V. Rantala;We examined long-term relationships between Cladocera and limnogeological and climate variables in a late Holocene lake sediment sequence to assess cladoceran responses to climate change and reconstruct past climate variations in southern Finland, near the Baltic Sea coast. Elemental composition, organic matter, and inferred water quality variables were used to constrain paleoenvironmental (until 4500 cal BP) conditions and human impact. Fossil Cladocera assemblages, ephippia, and body size trends were utilized to estimate mean July air temperature (T Jul) variability, open-water season length, and water-temperature regimes. Results revealed stable cladoceran communities, dominated by Eubosmina, until 500 cal BP, followed by major assemblage changes including increases in Chydorus cf. sphaericus, Alonella spp., and Bosmina longirostris. Pb and Cu concentrations were associated temporally with increasing human impact and warming climate during the past few centuries, and were the most significant factors in explaining cladoceran community changes, based on redundancy analysis. A Cladocera-based T Jul reconstruction estimated elevated temperatures for the end of the Holocene Thermal Maximum, a cooler period during ~3000–2000 cal BP, slightly increased temperatures during 1200–800 cal BP corresponding to the Medieval Climate Anomaly (MCA), and lower temperatures during the Little Ice Age (LIA), 800–200 cal BP. The reconstruction also suggests that significant climate warming took place during the twentieth century. Cladocerans mostly associated with warm periods included B. longirostris and Pleuroxus uncinatus, whereas Alona affinis, A. quadrangularis, and C. cf. sphaericus were associated with colder climate. Compared to a reference Chironomidae-inferred T Jul reconstruction from the same region, discrepancies were apparent in amplitude of temperature change, as the temperature variability in the cladoceran-based record was muted until ~200 cal BP. During the LIA, increased ephippia and body size agreed with the temperature reconstruction, but suggested a severely shorter open-water season and reduced water temperatures compared to the preceding late Holocene episodes, even though the cladoceran T Jul showed quite similar temperatures for these periods. Our results suggest that fossil cladoceran assemblages, ephippia, and morphological attributes respond sensitively to long-term climate fluctuations and this record reflects well the major climate events of the late Holocene and provides realistic paleoclimatic estimates for maritime southern Finland.
Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Tomi P. Luoto; Tomi P. Luoto; Liisa Nevalainen; Marttiina V. Rantala;We examined long-term relationships between Cladocera and limnogeological and climate variables in a late Holocene lake sediment sequence to assess cladoceran responses to climate change and reconstruct past climate variations in southern Finland, near the Baltic Sea coast. Elemental composition, organic matter, and inferred water quality variables were used to constrain paleoenvironmental (until 4500 cal BP) conditions and human impact. Fossil Cladocera assemblages, ephippia, and body size trends were utilized to estimate mean July air temperature (T Jul) variability, open-water season length, and water-temperature regimes. Results revealed stable cladoceran communities, dominated by Eubosmina, until 500 cal BP, followed by major assemblage changes including increases in Chydorus cf. sphaericus, Alonella spp., and Bosmina longirostris. Pb and Cu concentrations were associated temporally with increasing human impact and warming climate during the past few centuries, and were the most significant factors in explaining cladoceran community changes, based on redundancy analysis. A Cladocera-based T Jul reconstruction estimated elevated temperatures for the end of the Holocene Thermal Maximum, a cooler period during ~3000–2000 cal BP, slightly increased temperatures during 1200–800 cal BP corresponding to the Medieval Climate Anomaly (MCA), and lower temperatures during the Little Ice Age (LIA), 800–200 cal BP. The reconstruction also suggests that significant climate warming took place during the twentieth century. Cladocerans mostly associated with warm periods included B. longirostris and Pleuroxus uncinatus, whereas Alona affinis, A. quadrangularis, and C. cf. sphaericus were associated with colder climate. Compared to a reference Chironomidae-inferred T Jul reconstruction from the same region, discrepancies were apparent in amplitude of temperature change, as the temperature variability in the cladoceran-based record was muted until ~200 cal BP. During the LIA, increased ephippia and body size agreed with the temperature reconstruction, but suggested a severely shorter open-water season and reduced water temperatures compared to the preceding late Holocene episodes, even though the cladoceran T Jul showed quite similar temperatures for these periods. Our results suggest that fossil cladoceran assemblages, ephippia, and morphological attributes respond sensitively to long-term climate fluctuations and this record reflects well the major climate events of the late Holocene and provides realistic paleoclimatic estimates for maritime southern Finland.
Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Springer Science and Business Media LLC Xin Xin Wang; Xin Xin Wang; Xin Xin Wang; Thomas W. Kuyper; Liesje Mommer; Gu Feng; Ellis Hoffland;pmid: 30919070
Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Springer Science and Business Media LLC Xin Xin Wang; Xin Xin Wang; Xin Xin Wang; Thomas W. Kuyper; Liesje Mommer; Gu Feng; Ellis Hoffland;pmid: 30919070
Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Helena Korpelainen; Qingquan Han; Qingquan Han; Zhijun Li; Chunyang Li; Jianxun Luo;handle: 10138/307840
Abstract In this study, intergeneric grafting was employed between Populus cathayana and Salix rehderiana to investigate the grafting compatibility of the two Salicaceae plants and to reveal whether grafting can improve their drought resistance. Under different grafting combinations (P. cathayana scion with P. cathayana rootstock, P/P; P. cathayana scion with S. rehderiana rootstock, P/S; S. rehderiana scion with S. rehderiana rootstock, S/S; and S. rehderiana scion with P. cathayana rootstock, S/P), the survival and growth rate, biomass accumulation and allocation, photosynthetic traits, carbon isotope composition (δ13C), relative water content (RWC) and non-structural carbohydrates (NSCs) were measured. The results showed that the grafting compatibility between P. cathayana and S. rehderiana was very high, as the survival rates ranged from 76% to 100% under different grafting combinations. Drought significantly decreased growth, biomass accumulation, photosynthetic pigment contents, net photosynthesis rates (Pn) and RWC, and increased δ13C in all grafting combinations. Under drought stress, biomass accumulation, total chlorophyll, transpiration rate (E) and Pn were higher in P/P and P/S than in S/S and S/P. Compared with P/P, the growth rate, biomass accumulation, root/aboveground ratio (R/A ratio), carotenoid, RWC, starch and total soluble sugar (TSS) of P/S were less affected by drought. The height growth rate (GRH), R/A ratio, carotenoid, chlorophyll a, total chlorophyll, WUEi and TSS of S/P were lower than those of S/S under water-limited conditions. Moreover, a principal component analysis indicated that P/S and S/S had higher drought resistance than P/P and S/P under water deficits. The used method allows combining specific advantageous traits from P. cathayana and S. rehderiana, which may be a highly useful tool to enhance drought resistance in the cultivation of Salicaceae plants.
Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Helena Korpelainen; Qingquan Han; Qingquan Han; Zhijun Li; Chunyang Li; Jianxun Luo;handle: 10138/307840
Abstract In this study, intergeneric grafting was employed between Populus cathayana and Salix rehderiana to investigate the grafting compatibility of the two Salicaceae plants and to reveal whether grafting can improve their drought resistance. Under different grafting combinations (P. cathayana scion with P. cathayana rootstock, P/P; P. cathayana scion with S. rehderiana rootstock, P/S; S. rehderiana scion with S. rehderiana rootstock, S/S; and S. rehderiana scion with P. cathayana rootstock, S/P), the survival and growth rate, biomass accumulation and allocation, photosynthetic traits, carbon isotope composition (δ13C), relative water content (RWC) and non-structural carbohydrates (NSCs) were measured. The results showed that the grafting compatibility between P. cathayana and S. rehderiana was very high, as the survival rates ranged from 76% to 100% under different grafting combinations. Drought significantly decreased growth, biomass accumulation, photosynthetic pigment contents, net photosynthesis rates (Pn) and RWC, and increased δ13C in all grafting combinations. Under drought stress, biomass accumulation, total chlorophyll, transpiration rate (E) and Pn were higher in P/P and P/S than in S/S and S/P. Compared with P/P, the growth rate, biomass accumulation, root/aboveground ratio (R/A ratio), carotenoid, RWC, starch and total soluble sugar (TSS) of P/S were less affected by drought. The height growth rate (GRH), R/A ratio, carotenoid, chlorophyll a, total chlorophyll, WUEi and TSS of S/P were lower than those of S/S under water-limited conditions. Moreover, a principal component analysis indicated that P/S and S/S had higher drought resistance than P/P and S/P under water deficits. The used method allows combining specific advantageous traits from P. cathayana and S. rehderiana, which may be a highly useful tool to enhance drought resistance in the cultivation of Salicaceae plants.
Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental and Ex... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiEnvironmental and Experimental BotanyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2018.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Henricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; +1 AuthorsHenricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; Martinus Jacobus Antonius Weterings;It has long been established that mature forests are mosaics of patches in different development phases but it has seldom explicitly been taken into account in ecological studies. We demonstrate here that these development phases, which are related to the population dynamics of trees, play an important role in the distribution of fauna based on observations on frugivorous birds. In an area close to the Calakmul Biosphere Reserve in Mexico, we studied the abundance of large forest bird species in relation to forest development phases, with a methodology that seems promising for ecological diagnosis and prognosis in forest management planning. Fine-scale forest mapping and bird counts were carried out in two block-transects of 40 m x 3000 m. Tree sampling in a sub-transect was used to generate population characteristics of trees, Large bird species preferred mature or senescent forest patches, whereas relatively young, growing forest patches were avoided. Important large tree species such as Manilkara zapota, Thouinia paucidentata, Guaiacum sanctum and Esenbeckia pentaphylla, characteristic of older forest patches, showed skewed size distributions indicating stress or overexploitation. The population of M. zapota, a key fruiting species that accounted for 26.5% of the total woody biomass, was most heavily affected by stress. A future collapse in the population of M. zapota, a decrease of the total area of older forest, and a decline in the abundance of large birds is likely if stress on the system continues at this level. (C) 2008 Elsevier B.V. All rights reserved.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Henricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; +1 AuthorsHenricus Franciscus M. Vester; Suzanne Maria Weterings-Schonck; Sophie Calmé; Martinus Jacobus Antonius Weterings; Martinus Jacobus Antonius Weterings;It has long been established that mature forests are mosaics of patches in different development phases but it has seldom explicitly been taken into account in ecological studies. We demonstrate here that these development phases, which are related to the population dynamics of trees, play an important role in the distribution of fauna based on observations on frugivorous birds. In an area close to the Calakmul Biosphere Reserve in Mexico, we studied the abundance of large forest bird species in relation to forest development phases, with a methodology that seems promising for ecological diagnosis and prognosis in forest management planning. Fine-scale forest mapping and bird counts were carried out in two block-transects of 40 m x 3000 m. Tree sampling in a sub-transect was used to generate population characteristics of trees, Large bird species preferred mature or senescent forest patches, whereas relatively young, growing forest patches were avoided. Important large tree species such as Manilkara zapota, Thouinia paucidentata, Guaiacum sanctum and Esenbeckia pentaphylla, characteristic of older forest patches, showed skewed size distributions indicating stress or overexploitation. The population of M. zapota, a key fruiting species that accounted for 26.5% of the total woody biomass, was most heavily affected by stress. A future collapse in the population of M. zapota, a decrease of the total area of older forest, and a decline in the abundance of large birds is likely if stress on the system continues at this level. (C) 2008 Elsevier B.V. All rights reserved.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2008.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Wiley Funded by:EC | ANTARESEC| ANTARESVasco Veiga Branco; Marija Miličić; Marija Miličić; Pedro Cardoso; Snežana Popov;AbstractWhile several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Wiley Funded by:EC | ANTARESEC| ANTARESVasco Veiga Branco; Marija Miličić; Marija Miličić; Pedro Cardoso; Snežana Popov;AbstractWhile several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:Public Library of Science (PLoS) J.M.H. Verspagen; D.B. van de Waal; J.F. Finke; P.M. Visser; E. van Donk; J. Huisman;pmid: 25119996
pmc: PMC4132121
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:Public Library of Science (PLoS) J.M.H. Verspagen; D.B. van de Waal; J.F. Finke; P.M. Visser; E. van Donk; J. Huisman;pmid: 25119996
pmc: PMC4132121
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0104325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:NSERCNSERCNiclas Vallin; Anna Qvarnström; David Wheatcroft; Päivi M. Sirkiä; Päivi M. Sirkiä; S. Eryn McFarlane; Murielle Ålund; Jakub Rybinski;doi: 10.1111/evo.13019
pmid: 27464950
Competition-driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on-going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition-driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future "voluntarily" altered immigration patterns and possibly strengthened habitat isolation through reinforcement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:NSERCNSERCNiclas Vallin; Anna Qvarnström; David Wheatcroft; Päivi M. Sirkiä; Päivi M. Sirkiä; S. Eryn McFarlane; Murielle Ålund; Jakub Rybinski;doi: 10.1111/evo.13019
pmid: 27464950
Competition-driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on-going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition-driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future "voluntarily" altered immigration patterns and possibly strengthened habitat isolation through reinforcement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/evo.13019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Tomi P. Luoto; Tomi P. Luoto; Liisa Nevalainen; Marttiina V. Rantala;We examined long-term relationships between Cladocera and limnogeological and climate variables in a late Holocene lake sediment sequence to assess cladoceran responses to climate change and reconstruct past climate variations in southern Finland, near the Baltic Sea coast. Elemental composition, organic matter, and inferred water quality variables were used to constrain paleoenvironmental (until 4500 cal BP) conditions and human impact. Fossil Cladocera assemblages, ephippia, and body size trends were utilized to estimate mean July air temperature (T Jul) variability, open-water season length, and water-temperature regimes. Results revealed stable cladoceran communities, dominated by Eubosmina, until 500 cal BP, followed by major assemblage changes including increases in Chydorus cf. sphaericus, Alonella spp., and Bosmina longirostris. Pb and Cu concentrations were associated temporally with increasing human impact and warming climate during the past few centuries, and were the most significant factors in explaining cladoceran community changes, based on redundancy analysis. A Cladocera-based T Jul reconstruction estimated elevated temperatures for the end of the Holocene Thermal Maximum, a cooler period during ~3000–2000 cal BP, slightly increased temperatures during 1200–800 cal BP corresponding to the Medieval Climate Anomaly (MCA), and lower temperatures during the Little Ice Age (LIA), 800–200 cal BP. The reconstruction also suggests that significant climate warming took place during the twentieth century. Cladocerans mostly associated with warm periods included B. longirostris and Pleuroxus uncinatus, whereas Alona affinis, A. quadrangularis, and C. cf. sphaericus were associated with colder climate. Compared to a reference Chironomidae-inferred T Jul reconstruction from the same region, discrepancies were apparent in amplitude of temperature change, as the temperature variability in the cladoceran-based record was muted until ~200 cal BP. During the LIA, increased ephippia and body size agreed with the temperature reconstruction, but suggested a severely shorter open-water season and reduced water temperatures compared to the preceding late Holocene episodes, even though the cladoceran T Jul showed quite similar temperatures for these periods. Our results suggest that fossil cladoceran assemblages, ephippia, and morphological attributes respond sensitively to long-term climate fluctuations and this record reflects well the major climate events of the late Holocene and provides realistic paleoclimatic estimates for maritime southern Finland.
Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Tomi P. Luoto; Tomi P. Luoto; Liisa Nevalainen; Marttiina V. Rantala;We examined long-term relationships between Cladocera and limnogeological and climate variables in a late Holocene lake sediment sequence to assess cladoceran responses to climate change and reconstruct past climate variations in southern Finland, near the Baltic Sea coast. Elemental composition, organic matter, and inferred water quality variables were used to constrain paleoenvironmental (until 4500 cal BP) conditions and human impact. Fossil Cladocera assemblages, ephippia, and body size trends were utilized to estimate mean July air temperature (T Jul) variability, open-water season length, and water-temperature regimes. Results revealed stable cladoceran communities, dominated by Eubosmina, until 500 cal BP, followed by major assemblage changes including increases in Chydorus cf. sphaericus, Alonella spp., and Bosmina longirostris. Pb and Cu concentrations were associated temporally with increasing human impact and warming climate during the past few centuries, and were the most significant factors in explaining cladoceran community changes, based on redundancy analysis. A Cladocera-based T Jul reconstruction estimated elevated temperatures for the end of the Holocene Thermal Maximum, a cooler period during ~3000–2000 cal BP, slightly increased temperatures during 1200–800 cal BP corresponding to the Medieval Climate Anomaly (MCA), and lower temperatures during the Little Ice Age (LIA), 800–200 cal BP. The reconstruction also suggests that significant climate warming took place during the twentieth century. Cladocerans mostly associated with warm periods included B. longirostris and Pleuroxus uncinatus, whereas Alona affinis, A. quadrangularis, and C. cf. sphaericus were associated with colder climate. Compared to a reference Chironomidae-inferred T Jul reconstruction from the same region, discrepancies were apparent in amplitude of temperature change, as the temperature variability in the cladoceran-based record was muted until ~200 cal BP. During the LIA, increased ephippia and body size agreed with the temperature reconstruction, but suggested a severely shorter open-water season and reduced water temperatures compared to the preceding late Holocene episodes, even though the cladoceran T Jul showed quite similar temperatures for these periods. Our results suggest that fossil cladoceran assemblages, ephippia, and morphological attributes respond sensitively to long-term climate fluctuations and this record reflects well the major climate events of the late Holocene and provides realistic paleoclimatic estimates for maritime southern Finland.
Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-015-9849-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Springer Science and Business Media LLC Xin Xin Wang; Xin Xin Wang; Xin Xin Wang; Thomas W. Kuyper; Liesje Mommer; Gu Feng; Ellis Hoffland;pmid: 30919070
Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Springer Science and Business Media LLC Xin Xin Wang; Xin Xin Wang; Xin Xin Wang; Thomas W. Kuyper; Liesje Mommer; Gu Feng; Ellis Hoffland;pmid: 30919070
Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00572-019-00885-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu