- home
- Search
- Energy Research
- 11. Sustainability
- FR
- NL
- University of California System
- Energy Research
- 11. Sustainability
- FR
- NL
- University of California System
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, United KingdomPublisher:Resilience Alliance, Inc. Huitema, Dave; Adger, W. Neil; Berkhout, Frans; Massey, Eric; Mazmanian, Daniel; Munaretto, Stefania; Plummer, Ryan; Termeer, Catrien C J A M;The governance of climate adaptation involves the collective efforts of multiple societal actors to address problems, or to reap the benefits, associated with impacts of climate change. Governing involves the creation of institutions, rules and organizations, and the selection of normative principles to guide problem solution and institution building. We argue that actors involved in governing climate change adaptation, as climate change governance regimes evolve, inevitably must engage in making choices, for instance on problem definitions, jurisdictional levels, on modes of governance and policy instruments, and on the timing of interventions. Yet little is known about how and why these choices are made in practice, and how such choices affect the outcomes of our efforts to govern adaptation. In this introduction we review the current state of evidence and the specific contribution of the articles published in this Special Feature, which are aimed at bringing greater clarity in these matters, and thereby informing both governance theory and practice. Collectively, the contributing papers suggest that the way issues are defined has important consequences for the support for governance interventions, and their effectiveness. The articles suggest that currently the emphasis in adaptation governance is on the local and regional levels, while underscoring the benefits of interventions and governance at higher jurisdictional levels in terms of visioning and scaling-up effective approaches. The articles suggest that there is a central role of government agencies in leading governance interventions to address spillover effects, to provide public goods, and to promote the long-term perspectives for planning. They highlight the issue of justice in the governance of adaptation showing how governance measures have wide distributional consequences, including the potential to amplify existing inequalities, access to resources, or generating new injustices through distribution of risks. For several of these findings, future research directions are suggested.
Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
download 45download downloads 45 Powered bymore_vert Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | MRV4SOC, RCN | Climate smart use of Norw...EC| MRV4SOC ,RCN| Climate smart use of Norwegian organic soilsJunbin Zhao; Simon Weldon; Alexandra Barthelmes; Erin Swails; Kristell Hergoualc'h; Ülo Mander; Chunjing Qiu; John Connolly; Whendee L. Silver; David I. Campbell;handle: 10568/135827
AbstractGreenhouse gas (GHGs) emissions from peatlands contribute significantly to ongoing climate change because of human land use. To develop reliable and comprehensive estimates and predictions of GHG emissions from peatlands, it is necessary to have GHG observations, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), that cover different peatland types globally. We synthesize published peatland studies with field GHG flux measurements to identify gaps in observations and suggest directions for future research. Although GHG flux measurements have been conducted at numerous sites globally, substantial gaps remain in current observations, encompassing various peatland types, regions and GHGs. Generally, there is a pressing need for additional GHG observations in Africa, Latin America and the Caribbean regions. Despite widespread measurements of CO2 and CH4, studies quantifying N2O emissions from peatlands are scarce, particularly in natural ecosystems. To expand the global coverage of peatland data, it is crucial to conduct more eddy covariance observations for long-term monitoring. Automated chambers are preferable for plot-scale observations to produce high temporal resolution data; however, traditional field campaigns with manual chamber measurements remain necessary, particularly in remote areas. To ensure that the data can be further used for modeling purposes, we suggest that chamber campaigns should be conducted at least monthly for a minimum duration of one year with no fewer than three replicates and measure key environmental variables. In addition, further studies are needed in restored peatlands, focusing on identifying the most effective restoration approaches for different ecosystem types, conditions, climates, and land use histories.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/135827Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-023-01091-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/135827Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-023-01091-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Elsevier BV Sang Hoon Lee; Theo Picard; Theo Picard; Na Luo; Kaiyu Sun; Tianzhen Hong;Abstract Zero-net-energy (ZNE) homes produce an adequate amount of energy on-site to meet their energy demand based on source energy for an entire year. California building energy efficiency standards require new residential buildings started in 2020 to be ZNE. For various reasons, a home designed as ZNE may not achieve ZNE performance in real operation. This study aimed to quantify the robustness of the energy performance of ZNE homes due to weather variability, climate change, and the uncertainty of occupant behavior. A single-family ZNE house, based on the optimal cost-effective design in three California climate zones, was used to develop the EnergyPlus simulation models. Weather variations were considered from a combination of the historical 30 years’ actual meteorological year (AMY) weather data, typical year weather data in TMY3, and future weather data based on Intergovernmental Panel on Climate Change scenarios. Three scenarios of occupant behavior from the energy perspective were defined to represent the uncertainty about occupants’ activities, comfort requirements, and their adaptive interactions with buildings and systems. In terms of annual source energy, the simulation results of the ZNE homes showed: (1) a decrease of 23–38 percent for occupants with energy austerity behavior and an increase of 120–130 percent for occupants with energy wasteful behavior, compared with the baseline assumption of normal occupants; (2) a variation range of −15 percent to +14 percent for the results using 30-year AMY weather data compared with the baseline results using TMY3 weather data; (3) an increase of 10–13 percent with future weather in Fresno and Riverside and a decrease of 15 percent with San Francisco; and (4) climate change can reduce the gap between the austerity and wasteful consumption. These findings provide insights into how ZNE homes may perform in reality and inform architects, engineers, occupants, and policymakers to pay more attention to occupant behavior on design, operation, and regulations of ZNE homes to ensure energy performance robustness.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Australia, France, Spain, Saudi Arabia, Saudi Arabia, FrancePublisher:Frontiers Media SA Authors: Whitney R. Friedman; Whitney R. Friedman; Benjamin S. Halpern; Benjamin S. Halpern; +24 AuthorsWhitney R. Friedman; Whitney R. Friedman; Benjamin S. Halpern; Benjamin S. Halpern; Elizabeth McLeod; Michael W. Beck; Michael W. Beck; Carlos M. Duarte; Carrie V. Kappel; Arielle Levine; Robert D. Sluka; Steven Adler; Casey C. O’Hara; Eleanor J. Sterling; Sebastian Tapia-Lewin; Iñigo J. Losada; Tim R. McClanahan; Linwood Pendleton; Linwood Pendleton; Linwood Pendleton; Linwood Pendleton; Margaret Spring; James P. Toomey; Kenneth R. Weiss; Hugh P. Possingham; Hugh P. Possingham; Jensen R. Montambault; Jensen R. Montambault;handle: 10754/661635
ABSTRACT: The health of coastal human communities and marine ecosystems are at risk from a host of anthropogenic stressors, in particular, climate change. Because ecological health and human well-being are inextricably connected, effective and positive responses to current risks require multidisciplinary solutions. Yet, the complexity of coupled social-ecological systems has left many potential solutions unidentified or insufficiently explored. The urgent need to achieve positive social and ecological outcomes across local and global scales necessitates rapid and targeted multidisciplinary research to identify solutions that have the greatest chance of promoting benefits for both people and nature. To address these challenges, we conducted a forecasting exercise with a diverse, multidisciplinary team to identify priority research questions needed to promote sustainable and just marine social-ecological systems now and into the future, within the context of climate change and population growth. In contrast to the traditional reactive cycle of science and management, we aimed to generate questions that focus on what we need to know, before we need to know it. Participants were presented with the question, "If we were managing oceans in 2050 and looking back, what research, primary or synthetic, would wish we had invested in today?" We first identified major social and ecological events over the past 60 years that shaped current human relationships with coasts and oceans. We then used a modified Delphi approach to identify nine priority research areas and 46 questions focused on increasing sustainability and well-being in marine social-ecological systems. The research areas we identified include relationships between ecological and human health, access to resources, equity, governance, economics, resilience, and technology. Most questions require increased collaboration across traditionally distinct disciplines and sectors for successful study and implementation. By identifying these questions, we hope to facilitate the discourse, research, and policies needed to rapidly promote healthy marine ecosystems and the human communities that depend upon them.
Frontiers in Marine ... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 46 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Norway, France, FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBON, EC | COMBINE, RCN | Support for the Scientifi... +3 projectsEC| GEOCARBON ,EC| COMBINE ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| CARBOCHANGE ,SNSF| Climate and Environmental Physics ,SNSF| Klima- und UmweltphysikClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1 PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 645 citations 645 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2006 United States, United Kingdom, United States, France, France, United States, United States, NetherlandsPublisher:American Geophysical Union (AGU) Markus Amann; Henk Eskes; Nicholas Savage; M. Gauss; Tim Butler; T. P. C. van Noije; M. G. Sanderson; Martin G. Schultz; John A. Pyle; Drew Shindell; Dan Bergmann; Frank Dentener; Kengo Sudo; Arlene M. Fiore; Ivar S. A. Isaksen; Ruth M. Doherty; Larry W. Horowitz; Louisa K. Emmons; David Stevenson; I. Bey; Jean-François Müller; J. Drevet; Nadine Unger; Michael J. Prather; Didier A. Hauglustaine; Guang Zeng; Giovanni Pitari; Susan E. Strahan; Jose M. Rodriguez; Sebastian Rast; Gregory Faluvegi; Oliver Wild; Oliver Wild; Sophie Szopa; K. Ellingsen; Maarten Krol; C. S. Atherton; Richard G. Derwent; Janusz Cofala; Jean-Francois Lamarque; V. Montanaro; Mark Lawrence; Gabrielle Pétron; William J. Collins;We analyze present‐day and future carbon monoxide (CO) simulations in 26 state‐of‐the‐art atmospheric chemistry models run to study future air quality and climate change. In comparison with near‐global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year‐round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south‐central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 ± 3.5 ppbv (16%) for the high‐emissions (A2) scenario, by 1.7 ± 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 ± 2.3 ppbv (11%) for the low‐emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 ± 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10–20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year‐round under A2, with the largest changes over central Africa (20–30 ppbv), southern Brazil (20–35 ppbv) and south and east Asia (30–70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the world's populated areas.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 234 citations 234 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, France, United Kingdom, United Kingdom, United Kingdom, France, France, United StatesPublisher:Springer Science and Business Media LLC Funded by:UKRI | South American Biomass Bu...UKRI| South American Biomass Burning Analysis (SAMBBA)Gaveau, David LA; Salim, Mohammad A; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E; Molidena, Elis; Yaen, Husna; DeFries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas;AbstractTrans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 – a non-drought year – Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated “very unhealthy”). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5–10% of Indonesia's mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 271 citations 271 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Argentina, Argentina, United StatesPublisher:American Geophysical Union (AGU) Benjamin Z. Houlton; Amy T. Austin; Kenneth G. Cassman; Guolin Yao; Viney P. Aneja; Chao Wang; Jan Willem Erisman; Jana E. Compton; William H. Schlesinger; Luiz Antonio Martinelli; James N. Galloway; Baojing Gu; Edith Bai; Edith Bai; Thomas P. Tomich; Maya Almaraz; Kate M. Scow; Xin Zhang; Eric A. Davidson;AbstractNitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation.
FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, United KingdomPublisher:Resilience Alliance, Inc. Huitema, Dave; Adger, W. Neil; Berkhout, Frans; Massey, Eric; Mazmanian, Daniel; Munaretto, Stefania; Plummer, Ryan; Termeer, Catrien C J A M;The governance of climate adaptation involves the collective efforts of multiple societal actors to address problems, or to reap the benefits, associated with impacts of climate change. Governing involves the creation of institutions, rules and organizations, and the selection of normative principles to guide problem solution and institution building. We argue that actors involved in governing climate change adaptation, as climate change governance regimes evolve, inevitably must engage in making choices, for instance on problem definitions, jurisdictional levels, on modes of governance and policy instruments, and on the timing of interventions. Yet little is known about how and why these choices are made in practice, and how such choices affect the outcomes of our efforts to govern adaptation. In this introduction we review the current state of evidence and the specific contribution of the articles published in this Special Feature, which are aimed at bringing greater clarity in these matters, and thereby informing both governance theory and practice. Collectively, the contributing papers suggest that the way issues are defined has important consequences for the support for governance interventions, and their effectiveness. The articles suggest that currently the emphasis in adaptation governance is on the local and regional levels, while underscoring the benefits of interventions and governance at higher jurisdictional levels in terms of visioning and scaling-up effective approaches. The articles suggest that there is a central role of government agencies in leading governance interventions to address spillover effects, to provide public goods, and to promote the long-term perspectives for planning. They highlight the issue of justice in the governance of adaptation showing how governance measures have wide distributional consequences, including the potential to amplify existing inequalities, access to resources, or generating new injustices through distribution of risks. For several of these findings, future research directions are suggested.
Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
download 45download downloads 45 Powered bymore_vert Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | MRV4SOC, RCN | Climate smart use of Norw...EC| MRV4SOC ,RCN| Climate smart use of Norwegian organic soilsJunbin Zhao; Simon Weldon; Alexandra Barthelmes; Erin Swails; Kristell Hergoualc'h; Ülo Mander; Chunjing Qiu; John Connolly; Whendee L. Silver; David I. Campbell;handle: 10568/135827
AbstractGreenhouse gas (GHGs) emissions from peatlands contribute significantly to ongoing climate change because of human land use. To develop reliable and comprehensive estimates and predictions of GHG emissions from peatlands, it is necessary to have GHG observations, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), that cover different peatland types globally. We synthesize published peatland studies with field GHG flux measurements to identify gaps in observations and suggest directions for future research. Although GHG flux measurements have been conducted at numerous sites globally, substantial gaps remain in current observations, encompassing various peatland types, regions and GHGs. Generally, there is a pressing need for additional GHG observations in Africa, Latin America and the Caribbean regions. Despite widespread measurements of CO2 and CH4, studies quantifying N2O emissions from peatlands are scarce, particularly in natural ecosystems. To expand the global coverage of peatland data, it is crucial to conduct more eddy covariance observations for long-term monitoring. Automated chambers are preferable for plot-scale observations to produce high temporal resolution data; however, traditional field campaigns with manual chamber measurements remain necessary, particularly in remote areas. To ensure that the data can be further used for modeling purposes, we suggest that chamber campaigns should be conducted at least monthly for a minimum duration of one year with no fewer than three replicates and measure key environmental variables. In addition, further studies are needed in restored peatlands, focusing on identifying the most effective restoration approaches for different ecosystem types, conditions, climates, and land use histories.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/135827Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-023-01091-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.science/hal-04246164Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/135827Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-023-01091-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Elsevier BV Sang Hoon Lee; Theo Picard; Theo Picard; Na Luo; Kaiyu Sun; Tianzhen Hong;Abstract Zero-net-energy (ZNE) homes produce an adequate amount of energy on-site to meet their energy demand based on source energy for an entire year. California building energy efficiency standards require new residential buildings started in 2020 to be ZNE. For various reasons, a home designed as ZNE may not achieve ZNE performance in real operation. This study aimed to quantify the robustness of the energy performance of ZNE homes due to weather variability, climate change, and the uncertainty of occupant behavior. A single-family ZNE house, based on the optimal cost-effective design in three California climate zones, was used to develop the EnergyPlus simulation models. Weather variations were considered from a combination of the historical 30 years’ actual meteorological year (AMY) weather data, typical year weather data in TMY3, and future weather data based on Intergovernmental Panel on Climate Change scenarios. Three scenarios of occupant behavior from the energy perspective were defined to represent the uncertainty about occupants’ activities, comfort requirements, and their adaptive interactions with buildings and systems. In terms of annual source energy, the simulation results of the ZNE homes showed: (1) a decrease of 23–38 percent for occupants with energy austerity behavior and an increase of 120–130 percent for occupants with energy wasteful behavior, compared with the baseline assumption of normal occupants; (2) a variation range of −15 percent to +14 percent for the results using 30-year AMY weather data compared with the baseline results using TMY3 weather data; (3) an increase of 10–13 percent with future weather in Fresno and Riverside and a decrease of 15 percent with San Francisco; and (4) climate change can reduce the gap between the austerity and wasteful consumption. These findings provide insights into how ZNE homes may perform in reality and inform architects, engineers, occupants, and policymakers to pay more attention to occupant behavior on design, operation, and regulations of ZNE homes to ensure energy performance robustness.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Australia, France, Spain, Saudi Arabia, Saudi Arabia, FrancePublisher:Frontiers Media SA Authors: Whitney R. Friedman; Whitney R. Friedman; Benjamin S. Halpern; Benjamin S. Halpern; +24 AuthorsWhitney R. Friedman; Whitney R. Friedman; Benjamin S. Halpern; Benjamin S. Halpern; Elizabeth McLeod; Michael W. Beck; Michael W. Beck; Carlos M. Duarte; Carrie V. Kappel; Arielle Levine; Robert D. Sluka; Steven Adler; Casey C. O’Hara; Eleanor J. Sterling; Sebastian Tapia-Lewin; Iñigo J. Losada; Tim R. McClanahan; Linwood Pendleton; Linwood Pendleton; Linwood Pendleton; Linwood Pendleton; Margaret Spring; James P. Toomey; Kenneth R. Weiss; Hugh P. Possingham; Hugh P. Possingham; Jensen R. Montambault; Jensen R. Montambault;handle: 10754/661635
ABSTRACT: The health of coastal human communities and marine ecosystems are at risk from a host of anthropogenic stressors, in particular, climate change. Because ecological health and human well-being are inextricably connected, effective and positive responses to current risks require multidisciplinary solutions. Yet, the complexity of coupled social-ecological systems has left many potential solutions unidentified or insufficiently explored. The urgent need to achieve positive social and ecological outcomes across local and global scales necessitates rapid and targeted multidisciplinary research to identify solutions that have the greatest chance of promoting benefits for both people and nature. To address these challenges, we conducted a forecasting exercise with a diverse, multidisciplinary team to identify priority research questions needed to promote sustainable and just marine social-ecological systems now and into the future, within the context of climate change and population growth. In contrast to the traditional reactive cycle of science and management, we aimed to generate questions that focus on what we need to know, before we need to know it. Participants were presented with the question, "If we were managing oceans in 2050 and looking back, what research, primary or synthetic, would wish we had invested in today?" We first identified major social and ecological events over the past 60 years that shaped current human relationships with coasts and oceans. We then used a modified Delphi approach to identify nine priority research areas and 46 questions focused on increasing sustainability and well-being in marine social-ecological systems. The research areas we identified include relationships between ecological and human health, access to resources, equity, governance, economics, resilience, and technology. Most questions require increased collaboration across traditionally distinct disciplines and sectors for successful study and implementation. By identifying these questions, we hope to facilitate the discourse, research, and policies needed to rapidly promote healthy marine ecosystems and the human communities that depend upon them.
Frontiers in Marine ... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 46 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020Full-Text: https://hal.science/hal-02492506Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Norway, France, FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBON, EC | COMBINE, RCN | Support for the Scientifi... +3 projectsEC| GEOCARBON ,EC| COMBINE ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| CARBOCHANGE ,SNSF| Climate and Environmental Physics ,SNSF| Klima- und UmweltphysikClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1 PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 645 citations 645 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2006 United States, United Kingdom, United States, France, France, United States, United States, NetherlandsPublisher:American Geophysical Union (AGU) Markus Amann; Henk Eskes; Nicholas Savage; M. Gauss; Tim Butler; T. P. C. van Noije; M. G. Sanderson; Martin G. Schultz; John A. Pyle; Drew Shindell; Dan Bergmann; Frank Dentener; Kengo Sudo; Arlene M. Fiore; Ivar S. A. Isaksen; Ruth M. Doherty; Larry W. Horowitz; Louisa K. Emmons; David Stevenson; I. Bey; Jean-François Müller; J. Drevet; Nadine Unger; Michael J. Prather; Didier A. Hauglustaine; Guang Zeng; Giovanni Pitari; Susan E. Strahan; Jose M. Rodriguez; Sebastian Rast; Gregory Faluvegi; Oliver Wild; Oliver Wild; Sophie Szopa; K. Ellingsen; Maarten Krol; C. S. Atherton; Richard G. Derwent; Janusz Cofala; Jean-Francois Lamarque; V. Montanaro; Mark Lawrence; Gabrielle Pétron; William J. Collins;We analyze present‐day and future carbon monoxide (CO) simulations in 26 state‐of‐the‐art atmospheric chemistry models run to study future air quality and climate change. In comparison with near‐global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year‐round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south‐central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 ± 3.5 ppbv (16%) for the high‐emissions (A2) scenario, by 1.7 ± 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 ± 2.3 ppbv (11%) for the low‐emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 ± 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10–20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year‐round under A2, with the largest changes over central Africa (20–30 ppbv), southern Brazil (20–35 ppbv) and south and east Asia (30–70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the world's populated areas.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 234 citations 234 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, France, United Kingdom, United Kingdom, United Kingdom, France, France, United StatesPublisher:Springer Science and Business Media LLC Funded by:UKRI | South American Biomass Bu...UKRI| South American Biomass Burning Analysis (SAMBBA)Gaveau, David LA; Salim, Mohammad A; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E; Molidena, Elis; Yaen, Husna; DeFries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas;AbstractTrans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 – a non-drought year – Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated “very unhealthy”). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5–10% of Indonesia's mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 271 citations 271 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Argentina, Argentina, United StatesPublisher:American Geophysical Union (AGU) Benjamin Z. Houlton; Amy T. Austin; Kenneth G. Cassman; Guolin Yao; Viney P. Aneja; Chao Wang; Jan Willem Erisman; Jana E. Compton; William H. Schlesinger; Luiz Antonio Martinelli; James N. Galloway; Baojing Gu; Edith Bai; Edith Bai; Thomas P. Tomich; Maya Almaraz; Kate M. Scow; Xin Zhang; Eric A. Davidson;AbstractNitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation.
FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu