- home
- Search
- Energy Research
- natural sciences
- 12. Responsible consumption
- CN
- GB
- DE
- NL
- Energy Research
- natural sciences
- 12. Responsible consumption
- CN
- GB
- DE
- NL
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Jing Ma; Zhanbin Luo; Fu Chen; Qianlin Zhu; Shaoliang Zhang; Gang-Jun Liu;doi: 10.3390/su10082804
A new environmental ban has forced the restructure of open dumps in China since 1 July 2011. A technical process was established in this study that is feasible for the upgrade of open dumps through restructuring. The feasibility of restructuring and the benefit of greenhouse gas emission reductions were assessed according to field surveys of five landfills and four dumps in Nanjing. The results showed that the daily processing capacities of the existing landfills have been unable to meet the growth of municipal solid waste (MSW), making restructuring of the landfills imperative. According to an assessment of the technical process, only four sites in Nanjing were suitable for upgrading. Restructuring the Jiaozishan landfill effectively reduced the leachate generation rate by 5.84% under its scale when expanded by 60.7% in 2015. CO2 emissions were reduced by approximately 55,000–86,000 tons per year, in which biogas power generation replaced fossil fuels Fossil fuels accounted for the largest proportion, up to 45,000–60,000 tons. Photovoltaic power generation on the overlying land has not only reduced CO2 emissions to 26,000–30,000 tons per year but has also brought in continuing income from the sale of electricity. The funds are essential for developing countries such as China, which lack long-term financial support for landfill management after closure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Morocco, NetherlandsPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 296 citations 296 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Martin Zapf; Hermann Pengg; Christian Weindl;doi: 10.3390/en12152983
Avoiding irreversible climate change as effectively as possible is one of the most pressing challenges of society. Carbon pricing that is uniformly valid on a global and cross-sectoral basis represents a cost-efficient policy tool to meet this challenge. Carbon pricing allows external costs to be allocated or internalized on a polluter-pays principle. It is shown that a global emissions cap-and-trade system is the most suitable market-based instrument for reducing global emissions levels, in line with the temperature goal set by the Paris Agreement. A proposal for its design is presented in this paper. This instrument encourages worldwide measures, with the lowest marginal abatement cost, according to a pre-defined reduction path. Thereby, it ensures compliance with a specified remaining carbon budget to meet a certain temperature limit in a cost-efficient manner. Possible reduction paths are presented in this paper. Weaknesses in the design of existing emissions trading systems (ETS), such as the EU ETS, are identified and avoided in the proposed instrument. The framework solves several problems of today’s climate change policies, like the free rider problem, carbon leakage, rebound effects or the green paradox. The introduction of a global uniform carbon pricing instrument and its concrete design should be the subject of policy, especially at the United Nations climate change conferences, as soon as possible in order to allow for rapid implementation. If a global ETS with a uniform carbon price could be introduced, additional governmental regulations with regard to carbon emissions would become obsolete.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Sriyana, Ignatius (author); de Gijt, J.G. (author); Parahyangsari, Sri Kumala (author); Niyomukiza, John Bosco (author);In the current study, we examine the Indonesian government's watershed management program, which was established in 2001. In 2005, the Coordination Team for Rescue of Water Resources (CTRWR) was established to execute the program on a national level. However, at the time, field implementation was a sectoral interest due to the lack of program integration. To this end, the Indonesian government promoted integrated watershed management in 2009, which since then has been implemented by all stakeholders (in Top–Down management form), with application limited to preparing and planning documents. This is mainly driven by the stakeholders’ lack of understanding with regard to watershed systems as integrated management units. Field implementation results have not yet been realized, including the promotion of community-based watershed management (through Bottom–Up management). The purpose of our research was to determine the index numbers by measuring the level of cooperation between watershed management workers based on the Village Watershed Model (VWM) specifically surface water which includes six variables: planning, participation, institutional, fund sharing, gender, and management systems. The method used was an ordinal measure with the Likert scale. Our data showed successful watershed management, in which five of the six VWM variables—planning, participation, institutional, fund sharing, and management systems—were in the “good” category with indices ranging from 73.08 to 78.27. The gender variable index (69.12) was in the “medium” category.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 62 Powered bymore_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Mohamed Samer; Omar Hijazi; Badr A. Mohamed; Essam M. Abdelsalam; Mariam A. Amer; Ibrahim H. Yacoub; Yasser A. Attia; Heinz Bernhardt;Bioplastics are alternatives of conventional petroleum-based plastics. Bioplastics are polymers processed from renewable sources and are biodegradable. This study aims at conducting an environmental impact assessment of the bioprocessing of agricultural wastes into bioplastics compared to petro-plastics using an LCA approach. Bioplastics were produced from potato peels in laboratory. In a biochemical reaction under heating, starch was extracted from peels and glycerin, vinegar and water were added with a range of different ratios, which resulted in producing different samples of bio-based plastics. Nevertheless, the environmental impact of the bioplastics production process was evaluated and compared to petro-plastics. A life cycle analysis of bioplastics produced in laboratory and petro-plastics was conducted. The results are presented in the form of global warming potential, and other environmental impacts including acidification potential, eutrophication potential, freshwater ecotoxicity potential, human toxicity potential, and ozone layer depletion of producing bioplastics are compared to petro-plastics. The results show that the greenhouse gases (GHG) emissions, through the different experiments to produce bioplastics, range between 0.354 and 0.623 kg CO2 eq. per kg bioplastic compared to 2.37 kg CO2 eq. per kg polypropylene as a petro-plastic. The results also showed that there are no significant potential effects for the bioplastics produced from potato peels on different environmental impacts in comparison with poly-β-hydroxybutyric acid and polypropylene. Thus, the bioplastics produced from agricultural wastes can be manufactured in industrial scale to reduce the dependence on petroleum-based plastics. This in turn will mitigate GHG emissions and reduce the negative environmental impacts on climate change.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Designer Catalysts for Hi..., UKRI | Designer Catalysts for Hi...UKRI| Designer Catalysts for High Efficiency Biodiesel Production ,UKRI| Designer Catalysts for High Efficiency Biodiesel ProductionAuthors: Martinez Hernandez, E; SADHUKHAN, J; Campbell, GM; Martinez-Herrera, J;Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Tingting Liu; Xiaoxian Zhu; Mengqiu Cao;doi: 10.3390/su142114112
Although the United Nations’ Sustainable Development Goals (SDGs) advocate, through SDG 4 and SDG 10, equitable quality education and the reduction of inequalities within and between countries, respectively, few studies have examined how inequalities in regional sustainability influence higher education. Therefore, this study aims to examine the relationship between regional sustainability and higher education in China using fixed-effects panel modelling. A systematic force framework showing how regional sustainability drives higher education was constructed from economic, social, and environmental perspectives, and the endogeneity in the process of how regional sustainability affects higher education was explored by introducing one-year lagged values as instrumental variables. Our results show that regional sustainability has a significant impact on higher educational attainment in China, with differing effects in the eastern, central, and western regions, respectively. In central China, economic sustainability plays a significant positive role in higher educational attainment; in the western region, economic and social sustainability have stronger positive effects, while environmental sustainability has significantly negative effects. In terms of policy implications, our findings can be used to support regional development policies to promote regional higher education.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2010 NetherlandsPublisher:Verlag Dr. Albert Bartens KG Authors: Claassen, P.A.M.; de Vrije, G.J.; Urbaniec, K.; Grabarczyk, R.;doi: 10.36961/si9610
The production of hydrogen gas from biomass to meet the foreseen demand arising from the expected introduction of fuel cells is envisaged. Apart from the well-known gasification method, fermentative conversion can also be applied for this purpose. Two options of the latter method, that is, thermophilic fermentation and photofermentation can be combined in a two-stage process in which about 70% of hydrogen present in biomass is converted to gaseous form. It is expected that this process can be applied in decentralized, small-scale production units. The main stages of the fermentative hydrogen production process are the following: – biomass pretreatment to give fermentable feedstock and non-fermentables, – thermophilic fermentation in which fermentable feedstock is converted to hydrogen gas and organic acids, – photofermentation in which the organic acids are converted to hydrogen gas, – upgrading of hydrogen gas to meet product specification, – separation and treatment of non-fermentables. In order to develop a sustainable hydrogen production route based on fermentation, it is necessary to improve the existing knowledge of these process stages and to carry out process optimization studies. As a major step in this direction, the European research project HYVOLUTION has been organized under the 6th Framework Programme of the EU.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Snyder, Katherine A.; Ludi, Eva; Cullen, Beth; Tucker, Josephine; Zeleke, Alemayehu B; Duncan, Alan J.;doi: 10.1002/pad.1680
handle: 10568/56799
SUMMARYThis article discusses how decentralisation policies are enacted in the planning and implementation of natural resource management interventions in rural Ethiopia. A key element of decentralisation policy is the emphasis on greater participation by local communities. Drawing on qualitative research conducted with government staff and farmers, this paper illustrates how different actors perceive and implement national policy and how these actions affect the longer‐term sustainability of land management interventions. Copyright © 2014 John Wiley & Sons, Ltd.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Jing Ma; Zhanbin Luo; Fu Chen; Qianlin Zhu; Shaoliang Zhang; Gang-Jun Liu;doi: 10.3390/su10082804
A new environmental ban has forced the restructure of open dumps in China since 1 July 2011. A technical process was established in this study that is feasible for the upgrade of open dumps through restructuring. The feasibility of restructuring and the benefit of greenhouse gas emission reductions were assessed according to field surveys of five landfills and four dumps in Nanjing. The results showed that the daily processing capacities of the existing landfills have been unable to meet the growth of municipal solid waste (MSW), making restructuring of the landfills imperative. According to an assessment of the technical process, only four sites in Nanjing were suitable for upgrading. Restructuring the Jiaozishan landfill effectively reduced the leachate generation rate by 5.84% under its scale when expanded by 60.7% in 2015. CO2 emissions were reduced by approximately 55,000–86,000 tons per year, in which biogas power generation replaced fossil fuels Fossil fuels accounted for the largest proportion, up to 45,000–60,000 tons. Photovoltaic power generation on the overlying land has not only reduced CO2 emissions to 26,000–30,000 tons per year but has also brought in continuing income from the sale of electricity. The funds are essential for developing countries such as China, which lack long-term financial support for landfill management after closure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Morocco, NetherlandsPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 296 citations 296 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Martin Zapf; Hermann Pengg; Christian Weindl;doi: 10.3390/en12152983
Avoiding irreversible climate change as effectively as possible is one of the most pressing challenges of society. Carbon pricing that is uniformly valid on a global and cross-sectoral basis represents a cost-efficient policy tool to meet this challenge. Carbon pricing allows external costs to be allocated or internalized on a polluter-pays principle. It is shown that a global emissions cap-and-trade system is the most suitable market-based instrument for reducing global emissions levels, in line with the temperature goal set by the Paris Agreement. A proposal for its design is presented in this paper. This instrument encourages worldwide measures, with the lowest marginal abatement cost, according to a pre-defined reduction path. Thereby, it ensures compliance with a specified remaining carbon budget to meet a certain temperature limit in a cost-efficient manner. Possible reduction paths are presented in this paper. Weaknesses in the design of existing emissions trading systems (ETS), such as the EU ETS, are identified and avoided in the proposed instrument. The framework solves several problems of today’s climate change policies, like the free rider problem, carbon leakage, rebound effects or the green paradox. The introduction of a global uniform carbon pricing instrument and its concrete design should be the subject of policy, especially at the United Nations climate change conferences, as soon as possible in order to allow for rapid implementation. If a global ETS with a uniform carbon price could be introduced, additional governmental regulations with regard to carbon emissions would become obsolete.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Sriyana, Ignatius (author); de Gijt, J.G. (author); Parahyangsari, Sri Kumala (author); Niyomukiza, John Bosco (author);In the current study, we examine the Indonesian government's watershed management program, which was established in 2001. In 2005, the Coordination Team for Rescue of Water Resources (CTRWR) was established to execute the program on a national level. However, at the time, field implementation was a sectoral interest due to the lack of program integration. To this end, the Indonesian government promoted integrated watershed management in 2009, which since then has been implemented by all stakeholders (in Top–Down management form), with application limited to preparing and planning documents. This is mainly driven by the stakeholders’ lack of understanding with regard to watershed systems as integrated management units. Field implementation results have not yet been realized, including the promotion of community-based watershed management (through Bottom–Up management). The purpose of our research was to determine the index numbers by measuring the level of cooperation between watershed management workers based on the Village Watershed Model (VWM) specifically surface water which includes six variables: planning, participation, institutional, fund sharing, gender, and management systems. The method used was an ordinal measure with the Likert scale. Our data showed successful watershed management, in which five of the six VWM variables—planning, participation, institutional, fund sharing, and management systems—were in the “good” category with indices ranging from 73.08 to 78.27. The gender variable index (69.12) was in the “medium” category.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 62 Powered bymore_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Mohamed Samer; Omar Hijazi; Badr A. Mohamed; Essam M. Abdelsalam; Mariam A. Amer; Ibrahim H. Yacoub; Yasser A. Attia; Heinz Bernhardt;Bioplastics are alternatives of conventional petroleum-based plastics. Bioplastics are polymers processed from renewable sources and are biodegradable. This study aims at conducting an environmental impact assessment of the bioprocessing of agricultural wastes into bioplastics compared to petro-plastics using an LCA approach. Bioplastics were produced from potato peels in laboratory. In a biochemical reaction under heating, starch was extracted from peels and glycerin, vinegar and water were added with a range of different ratios, which resulted in producing different samples of bio-based plastics. Nevertheless, the environmental impact of the bioplastics production process was evaluated and compared to petro-plastics. A life cycle analysis of bioplastics produced in laboratory and petro-plastics was conducted. The results are presented in the form of global warming potential, and other environmental impacts including acidification potential, eutrophication potential, freshwater ecotoxicity potential, human toxicity potential, and ozone layer depletion of producing bioplastics are compared to petro-plastics. The results show that the greenhouse gases (GHG) emissions, through the different experiments to produce bioplastics, range between 0.354 and 0.623 kg CO2 eq. per kg bioplastic compared to 2.37 kg CO2 eq. per kg polypropylene as a petro-plastic. The results also showed that there are no significant potential effects for the bioplastics produced from potato peels on different environmental impacts in comparison with poly-β-hydroxybutyric acid and polypropylene. Thus, the bioplastics produced from agricultural wastes can be manufactured in industrial scale to reduce the dependence on petroleum-based plastics. This in turn will mitigate GHG emissions and reduce the negative environmental impacts on climate change.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-021-02145-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Designer Catalysts for Hi..., UKRI | Designer Catalysts for Hi...UKRI| Designer Catalysts for High Efficiency Biodiesel Production ,UKRI| Designer Catalysts for High Efficiency Biodiesel ProductionAuthors: Martinez Hernandez, E; SADHUKHAN, J; Campbell, GM; Martinez-Herrera, J;Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Tingting Liu; Xiaoxian Zhu; Mengqiu Cao;doi: 10.3390/su142114112
Although the United Nations’ Sustainable Development Goals (SDGs) advocate, through SDG 4 and SDG 10, equitable quality education and the reduction of inequalities within and between countries, respectively, few studies have examined how inequalities in regional sustainability influence higher education. Therefore, this study aims to examine the relationship between regional sustainability and higher education in China using fixed-effects panel modelling. A systematic force framework showing how regional sustainability drives higher education was constructed from economic, social, and environmental perspectives, and the endogeneity in the process of how regional sustainability affects higher education was explored by introducing one-year lagged values as instrumental variables. Our results show that regional sustainability has a significant impact on higher educational attainment in China, with differing effects in the eastern, central, and western regions, respectively. In central China, economic sustainability plays a significant positive role in higher educational attainment; in the western region, economic and social sustainability have stronger positive effects, while environmental sustainability has significantly negative effects. In terms of policy implications, our findings can be used to support regional development policies to promote regional higher education.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2010 NetherlandsPublisher:Verlag Dr. Albert Bartens KG Authors: Claassen, P.A.M.; de Vrije, G.J.; Urbaniec, K.; Grabarczyk, R.;doi: 10.36961/si9610
The production of hydrogen gas from biomass to meet the foreseen demand arising from the expected introduction of fuel cells is envisaged. Apart from the well-known gasification method, fermentative conversion can also be applied for this purpose. Two options of the latter method, that is, thermophilic fermentation and photofermentation can be combined in a two-stage process in which about 70% of hydrogen present in biomass is converted to gaseous form. It is expected that this process can be applied in decentralized, small-scale production units. The main stages of the fermentative hydrogen production process are the following: – biomass pretreatment to give fermentable feedstock and non-fermentables, – thermophilic fermentation in which fermentable feedstock is converted to hydrogen gas and organic acids, – photofermentation in which the organic acids are converted to hydrogen gas, – upgrading of hydrogen gas to meet product specification, – separation and treatment of non-fermentables. In order to develop a sustainable hydrogen production route based on fermentation, it is necessary to improve the existing knowledge of these process stages and to carry out process optimization studies. As a major step in this direction, the European research project HYVOLUTION has been organized under the 6th Framework Programme of the EU.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Snyder, Katherine A.; Ludi, Eva; Cullen, Beth; Tucker, Josephine; Zeleke, Alemayehu B; Duncan, Alan J.;doi: 10.1002/pad.1680
handle: 10568/56799
SUMMARYThis article discusses how decentralisation policies are enacted in the planning and implementation of natural resource management interventions in rural Ethiopia. A key element of decentralisation policy is the emphasis on greater participation by local communities. Drawing on qualitative research conducted with government staff and farmers, this paper illustrates how different actors perceive and implement national policy and how these actions affect the longer‐term sustainability of land management interventions. Copyright © 2014 John Wiley & Sons, Ltd.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu