- home
- Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- 7. Clean energy
- 12. Responsible consumption
- 15. Life on land
- NL
- Energy Research
- Open Access
- Closed Access
- Restricted
- 7. Clean energy
- 12. Responsible consumption
- 15. Life on land
- NL
Research data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:DANS Data Station Social Sciences and Humanities Authors: Gao, X.; De Hoge, I.E.; Fischer, A.R.H.;Fashion products made from repurposed materials (e.g., backpacks made from pineapple leaves) have become more prevalent nowadays, and their environmental sustainability is one of the core advantages. Yet, it is currently unclear how consumers respond to products made from repurposed materials. We conducted three experiments to examine the effects of three material features, namely function, sustainability, and distinguishability, on consumer preferences for fashion products made from repurposed materials. The results indicate that, when the function of repurposed materials is as good as that of conventional materials, consumers prefer a product made from repurposed materials over the same product made from conventional materials. Also, consumers in general prefer repurposed materials to be less visually distinguishable. Finally, when the sustainability of the repurposed products is emphasized, consumers appear more likely to choose products made from repurposed materials, even when these products have an inferior function. In conclusion, to promote fashion products made from repurposed materials, marketers may emphasize the function and sustainability of repurposed materials, and producers may manufacture repurposed materials that visually resemble conventional materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Kermeli, Katerina and Crijns-Graus, Wina;Data set with reference scenarios. As it is not possible to include the entire dataset in this report, we only include two Tables on final energy demand. Table 1 shows the Final Energy Demand projections per industrial subsector and EU28 country in the Reference Scenario and Table 2 the Final Energy Demand projections per industrial subsector and EU28 country in the Frozen Efficiency Scenario. The full dataset, including physical production (in ktonnes) and fuel and electricity demand (in TJ) per industrial sub-sector, per fuel type and per EU 28 country is available upon request to the project coordinator.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 167visibility views 167 download downloads 128 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Garner, Gregory; Hermans, Tim H.J.; Kopp, Robert; Slangen, Aimée; Edwards, Tasmin; Levermann, Anders; Nowicki, Sophie; Palmer, Matthew D.; Smith, Chris; Fox-Kemper, Baylor; Hewitt, Helene; Xiao, Cunde; Aðalgeirsdóttir, Guðfinna; Drijfhout, Sybren; Golledge, Nicholas; Hemer, Marc; Krinner, Gerhard; Mix, Alan; Notz, Dirk; Nurhati, Intan; Ruiz, Lucas; Sallée, Jean-Baptiste; Yu, Yongqiang; Hua, L.; Palmer, Tamzin; Pearson, Brodie;Project: IPCC Data Distribution Centre : Supplementary data sets for the Sixth Assessment Report - For the Sixth Assessment Report of the IPCC (AR6) input/source and intermediate datasets underlying the AR6 were collected and long-term archived. This project compliments CMIP6 data subset and snapshot analyzed for the WGI AR6. Summary: This data set contains detailed elements the sea level projections associated with the Intergovernmental Panel on Climate Change Sixth Assessment Report. In particular, it contains relative sea level projections that exclude the background term (representing primarily land subsidence or uplift). It includes probability distributions for all the workflows described in AR6 WGI 9.6.3.2. P-boxes derived from these distributions are available in the sister entry 'IPCC-DDC_AR6_Sup_PBox'. These data may be of use for users who want to substitute their own estimates of the background term. Regional projections can also be accessed through the NASA/IPCC Sea Level Projections Tool at https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool. See https://zenodo.org/communities/ipcc-ar6-sea-level-projections for additional related data sets.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:4TU.ResearchData Authors: Singh, Deepali;This repository consists of two databases- CASE-ONSHORE and CASE-OFFSHORE, generated using OpenFAST v2.4 on NREL's 10-MW reference wind turbine for training data-driven probabilistic load surrogate models. The data is to be used for mapping 10-minute average environmental conditions to the corresponding 10-minute load statistics such as load average, fatigue and range at various locations on the tower and blades.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/21939995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/21939995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:4TU.ResearchData Authors: Ming Huang (9325919); Yugandhar Vijaykumar Patil (11901000); Andrea Sciacchitano (9719522); Delphine De Tavernier (9365135); +1 AuthorsMing Huang (9325919); Yugandhar Vijaykumar Patil (11901000); Andrea Sciacchitano (9719522); Delphine De Tavernier (9365135); Carlos Simao Ferreira (10059373);doi: 10.4121/14685978.v1
The repository contains the underlining data for "On the wake deflection of vertical axis wind turbines by pitched blades" This repository consists of experimental (PIV and force measurements) data in the wake of VAWTs with different blade pitch angles. The measured cases include an isolated VAWT with -10, 0, 10 degree pitch, respectively. Author contribution: Ming Huang: Conceptualization; Methodology; Validation; Experimental design; Carrying out the experiment; postprocessing Yugandhar Vijaykumar Patil: Design assistant; Carrying out the experiment; postprocessing Andrea Sciacchitano: Conceptualization; Experimental design; Methodology; Validation; Delphine De Tavernier: Conceptualization Carlos Simao Ferreira: Conceptualization; Methodology; Validation; Experimental design
4TU.ResearchData | s... arrow_drop_down Smithsonian figshareDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14685978.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert 4TU.ResearchData | s... arrow_drop_down Smithsonian figshareDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14685978.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 NetherlandsPublisher:4TU.ResearchData Arts, Gertie; van Smeden, J.; Wolters, M.F.; Belgers, J.D.M.; Matser, A.M.; Hommen, U.; Bruns, E.; Heine, S.; Solga, A.; Taylor, S.;The dataset covers biotic and abiotic data from the aquatic habitat of a population of the sediment-rooted macrophyte Myriophyllum spicatum in the temperate climate region (The Netherlands). The growth of M. spicatum was monitored in 0.2025 m2 plant baskets installed in an experimental ditch. Parameters monitored included biomass (fresh and dry weight), shoot length, seasonal short-term growth rates of shoots, relevant environmental parameters and weather data. This dataset includes the 2-year experimental biotic (macrophyte biomass and growth data) and environmental data (water quality data, sediment data). A second file includes the statistical data. A third file includes the weather data.
4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/15368442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert 4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/15368442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 29 Sep 2015 NetherlandsPublisher:Dryad Holmgren, M.; Lin, C.Y.; Murillo, J.E.; Nieuwenhuis, A.; Penninkhof, J.M.; Sanders, N.; van Bart, T.; van Veen, H.; Vasander, H.; Vollebregt, M.E.; Limpens, J.;doi: 10.5061/dryad.jf2n3
Figure 1data_Exp 2Figure 1 data: Condition of experimental seedlings in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS) during the warmest growing season (2011) and at the end of the experiment (2013). Seedling condition was defined as: healthy (< 50% of the needles turned yellow or brown) or unhealthy (> 50% of the needles turned yellow or brown). Seedlings were 1 month old at plantation time in the July 2010.Table 1_environmental conditions_Exp 1Table 1 data: Environmental conditions and vegetation characteristics in hummocks (circular and bands) and lawns for Experiment 1. Water table depth below surface is an average for the four growing seasons (2010-2013)Table 2_ photosynthesis data_Exp 1Table 2 photosynthesis data: Photosynthesis rates for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1.Table 2_seedling responses_Exp 1Table 2 data: Responses of experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1 after 4 growing seasons. ST: Seeds inserted on top of moss; SB: Seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Emergence = % of planted seeds emerged after 1 year. Condition = % healthy seedlings. Stem growth corresponds to vertical stem growth for germinating (ST and SB) seedlings and new stem growth for older (small and large) seedlings.Table 3_regression seedling-environment_Exp 1Table 3 data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 during the whole experimental period (2010-2013). ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Condition = % healthy seedlings. Growth = stem growth.Table 4_Environmental data_Exp 2Table 4: Environmental conditions in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS).Table 4 and Table S5a_seedling performance_Exp 2Table 4: Seedling performance in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS). Seedling emergence, condition and survival from seeds inserted below the moss (SB), and from small planted seedlings.Table S3_cox regression (survival analysis)_Exp 1Table S3: Data for Cox survival analysis for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns during 2010-2013. ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time).Table S4_ regression seedling-environment 2011_Exp 1Table S4: Data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 in 2011. Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time). Condition = % healthy seedlings. Growth = stem growth. Boreal ecosystems are warming roughly twice as fast as the global average, resulting in woody expansion that could further speed up the climate warming. Boreal peatbogs are waterlogged systems that store more than 30% of the global soil carbon. Facilitative effects of shrubs and trees on the establishment of new individuals could increase tree cover with profound consequences for the structure and functioning of boreal peatbogs, carbon sequestration and climate. We conducted two field experiments in boreal peatbogs to assess the mechanisms that explain tree seedling recruitment and to estimate the strength of positive feedbacks between shrubs and trees. We planted seeds and seedlings of Pinus sylvestris in microsites with contrasting water-tables and woody cover and manipulated both shrub canopy and root competition. We monitored seedling emergence, growth and survival for up to four growing seasons and assessed how seedling responses related to abiotic and biotic conditions. We found that tree recruitment is more successful in drier topographical microsites with deeper water-tables. On these hummocks, shrubs have both positive and negative effects on tree seedling establishment. Shrub cover improved tree seedling condition, growth and survival during the warmest growing season. In turn, higher tree basal area correlates positively with soil nutrient availability, shrub biomass and abundance of tree juveniles. Synthesis. Our results suggest that shrubs facilitate tree colonization of peatbogs which further increases shrub growth. These facilitative effects seem to be stronger under warmer conditions suggesting that a higher frequency of warmer and dry summers may lead to stronger positive interactions between shrubs and trees that could eventually facilitate a shift from moss to tree-dominated systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 11 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Victoria Marin-Burgos; Joy S. Clancy;Background: The global palm oil market experienced a remarkable boom since the year 2000. Since palm oil can be used for biodiesel production, the global expansion of oil palm cultivation has been associated with the global biofuel boom. Biofuel policies—especially those adopted in the European Union (EU)—have been blamed for the socio-environmental impacts of oil palm expansion. We explore how the global biofuel boom interacts with national geographies and social-economic and political processes to produce country-specific trajectories of biofuel crops expansion. We analyse the expansion of oil palm cultivation in Colombia between 2000 and 2010 from a political ecology perspective. Methods: The analysis is based on a framework that positions expansion of commodity frontiers within the ‘space-of-flows’ and the ‘space-of-place’. Through this approach, we identify the markets and geographies that define the country-specific trajectories of expansion of oil palm in Colombia, and their connections with general patterns of land control. The empirical analysis is based on primary data collected during fieldwork, and on an extensive review of secondary data about the palm oil sector and the socio-environmental effects of oil palm expansion in the country. Results: The contemporary oil palm expansion in Colombia was not specifically influenced by the international biofuel market. Expansion was characterized by an increasing production of palm oil for biodiesel, to supply a policy-driven national biofuel market controlled by national palm oil producers. The evidence shows that this oil palm expansion proceeded through a variety of land control practices that constitute forms of ‘accumulation by dispossession’ and ‘assimilation’. These are embedded in contextual factors that include the agrarian history of Colombia, the armed conflict, and government policies. Conclusions: Our study shows that the ways in which expansion of biofuel crops unfold in each producing country depend not only on the global biofuel market. They are also shaped by the country-specific geographies and political economies. Therefore, research and policies on the global expansion of energy crops should account for the complex and interrelated factors that mediate the specific ways in which the global demand for biofuels creates biofuel crop booms at country level.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy, Sustainability and SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-017-0123-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy, Sustainability and SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-017-0123-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:DANS Data Station Social Sciences and Humanities Authors: Gao, X.; De Hoge, I.E.; Fischer, A.R.H.;Fashion products made from repurposed materials (e.g., backpacks made from pineapple leaves) have become more prevalent nowadays, and their environmental sustainability is one of the core advantages. Yet, it is currently unclear how consumers respond to products made from repurposed materials. We conducted three experiments to examine the effects of three material features, namely function, sustainability, and distinguishability, on consumer preferences for fashion products made from repurposed materials. The results indicate that, when the function of repurposed materials is as good as that of conventional materials, consumers prefer a product made from repurposed materials over the same product made from conventional materials. Also, consumers in general prefer repurposed materials to be less visually distinguishable. Finally, when the sustainability of the repurposed products is emphasized, consumers appear more likely to choose products made from repurposed materials, even when these products have an inferior function. In conclusion, to promote fashion products made from repurposed materials, marketers may emphasize the function and sustainability of repurposed materials, and producers may manufacture repurposed materials that visually resemble conventional materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Kermeli, Katerina and Crijns-Graus, Wina;Data set with reference scenarios. As it is not possible to include the entire dataset in this report, we only include two Tables on final energy demand. Table 1 shows the Final Energy Demand projections per industrial subsector and EU28 country in the Reference Scenario and Table 2 the Final Energy Demand projections per industrial subsector and EU28 country in the Frozen Efficiency Scenario. The full dataset, including physical production (in ktonnes) and fuel and electricity demand (in TJ) per industrial sub-sector, per fuel type and per EU 28 country is available upon request to the project coordinator.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 167visibility views 167 download downloads 128 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Garner, Gregory; Hermans, Tim H.J.; Kopp, Robert; Slangen, Aimée; Edwards, Tasmin; Levermann, Anders; Nowicki, Sophie; Palmer, Matthew D.; Smith, Chris; Fox-Kemper, Baylor; Hewitt, Helene; Xiao, Cunde; Aðalgeirsdóttir, Guðfinna; Drijfhout, Sybren; Golledge, Nicholas; Hemer, Marc; Krinner, Gerhard; Mix, Alan; Notz, Dirk; Nurhati, Intan; Ruiz, Lucas; Sallée, Jean-Baptiste; Yu, Yongqiang; Hua, L.; Palmer, Tamzin; Pearson, Brodie;Project: IPCC Data Distribution Centre : Supplementary data sets for the Sixth Assessment Report - For the Sixth Assessment Report of the IPCC (AR6) input/source and intermediate datasets underlying the AR6 were collected and long-term archived. This project compliments CMIP6 data subset and snapshot analyzed for the WGI AR6. Summary: This data set contains detailed elements the sea level projections associated with the Intergovernmental Panel on Climate Change Sixth Assessment Report. In particular, it contains relative sea level projections that exclude the background term (representing primarily land subsidence or uplift). It includes probability distributions for all the workflows described in AR6 WGI 9.6.3.2. P-boxes derived from these distributions are available in the sister entry 'IPCC-DDC_AR6_Sup_PBox'. These data may be of use for users who want to substitute their own estimates of the background term. Regional projections can also be accessed through the NASA/IPCC Sea Level Projections Tool at https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool. See https://zenodo.org/communities/ipcc-ar6-sea-level-projections for additional related data sets.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:4TU.ResearchData Authors: Singh, Deepali;This repository consists of two databases- CASE-ONSHORE and CASE-OFFSHORE, generated using OpenFAST v2.4 on NREL's 10-MW reference wind turbine for training data-driven probabilistic load surrogate models. The data is to be used for mapping 10-minute average environmental conditions to the corresponding 10-minute load statistics such as load average, fatigue and range at various locations on the tower and blades.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/21939995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/21939995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:4TU.ResearchData Authors: Ming Huang (9325919); Yugandhar Vijaykumar Patil (11901000); Andrea Sciacchitano (9719522); Delphine De Tavernier (9365135); +1 AuthorsMing Huang (9325919); Yugandhar Vijaykumar Patil (11901000); Andrea Sciacchitano (9719522); Delphine De Tavernier (9365135); Carlos Simao Ferreira (10059373);doi: 10.4121/14685978.v1
The repository contains the underlining data for "On the wake deflection of vertical axis wind turbines by pitched blades" This repository consists of experimental (PIV and force measurements) data in the wake of VAWTs with different blade pitch angles. The measured cases include an isolated VAWT with -10, 0, 10 degree pitch, respectively. Author contribution: Ming Huang: Conceptualization; Methodology; Validation; Experimental design; Carrying out the experiment; postprocessing Yugandhar Vijaykumar Patil: Design assistant; Carrying out the experiment; postprocessing Andrea Sciacchitano: Conceptualization; Experimental design; Methodology; Validation; Delphine De Tavernier: Conceptualization Carlos Simao Ferreira: Conceptualization; Methodology; Validation; Experimental design
4TU.ResearchData | s... arrow_drop_down Smithsonian figshareDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14685978.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert 4TU.ResearchData | s... arrow_drop_down Smithsonian figshareDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14685978.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 NetherlandsPublisher:4TU.ResearchData Arts, Gertie; van Smeden, J.; Wolters, M.F.; Belgers, J.D.M.; Matser, A.M.; Hommen, U.; Bruns, E.; Heine, S.; Solga, A.; Taylor, S.;The dataset covers biotic and abiotic data from the aquatic habitat of a population of the sediment-rooted macrophyte Myriophyllum spicatum in the temperate climate region (The Netherlands). The growth of M. spicatum was monitored in 0.2025 m2 plant baskets installed in an experimental ditch. Parameters monitored included biomass (fresh and dry weight), shoot length, seasonal short-term growth rates of shoots, relevant environmental parameters and weather data. This dataset includes the 2-year experimental biotic (macrophyte biomass and growth data) and environmental data (water quality data, sediment data). A second file includes the statistical data. A third file includes the weather data.
4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/15368442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert 4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/15368442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 29 Sep 2015 NetherlandsPublisher:Dryad Holmgren, M.; Lin, C.Y.; Murillo, J.E.; Nieuwenhuis, A.; Penninkhof, J.M.; Sanders, N.; van Bart, T.; van Veen, H.; Vasander, H.; Vollebregt, M.E.; Limpens, J.;doi: 10.5061/dryad.jf2n3
Figure 1data_Exp 2Figure 1 data: Condition of experimental seedlings in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS) during the warmest growing season (2011) and at the end of the experiment (2013). Seedling condition was defined as: healthy (< 50% of the needles turned yellow or brown) or unhealthy (> 50% of the needles turned yellow or brown). Seedlings were 1 month old at plantation time in the July 2010.Table 1_environmental conditions_Exp 1Table 1 data: Environmental conditions and vegetation characteristics in hummocks (circular and bands) and lawns for Experiment 1. Water table depth below surface is an average for the four growing seasons (2010-2013)Table 2_ photosynthesis data_Exp 1Table 2 photosynthesis data: Photosynthesis rates for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1.Table 2_seedling responses_Exp 1Table 2 data: Responses of experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1 after 4 growing seasons. ST: Seeds inserted on top of moss; SB: Seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Emergence = % of planted seeds emerged after 1 year. Condition = % healthy seedlings. Stem growth corresponds to vertical stem growth for germinating (ST and SB) seedlings and new stem growth for older (small and large) seedlings.Table 3_regression seedling-environment_Exp 1Table 3 data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 during the whole experimental period (2010-2013). ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Condition = % healthy seedlings. Growth = stem growth.Table 4_Environmental data_Exp 2Table 4: Environmental conditions in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS).Table 4 and Table S5a_seedling performance_Exp 2Table 4: Seedling performance in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS). Seedling emergence, condition and survival from seeds inserted below the moss (SB), and from small planted seedlings.Table S3_cox regression (survival analysis)_Exp 1Table S3: Data for Cox survival analysis for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns during 2010-2013. ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time).Table S4_ regression seedling-environment 2011_Exp 1Table S4: Data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 in 2011. Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time). Condition = % healthy seedlings. Growth = stem growth. Boreal ecosystems are warming roughly twice as fast as the global average, resulting in woody expansion that could further speed up the climate warming. Boreal peatbogs are waterlogged systems that store more than 30% of the global soil carbon. Facilitative effects of shrubs and trees on the establishment of new individuals could increase tree cover with profound consequences for the structure and functioning of boreal peatbogs, carbon sequestration and climate. We conducted two field experiments in boreal peatbogs to assess the mechanisms that explain tree seedling recruitment and to estimate the strength of positive feedbacks between shrubs and trees. We planted seeds and seedlings of Pinus sylvestris in microsites with contrasting water-tables and woody cover and manipulated both shrub canopy and root competition. We monitored seedling emergence, growth and survival for up to four growing seasons and assessed how seedling responses related to abiotic and biotic conditions. We found that tree recruitment is more successful in drier topographical microsites with deeper water-tables. On these hummocks, shrubs have both positive and negative effects on tree seedling establishment. Shrub cover improved tree seedling condition, growth and survival during the warmest growing season. In turn, higher tree basal area correlates positively with soil nutrient availability, shrub biomass and abundance of tree juveniles. Synthesis. Our results suggest that shrubs facilitate tree colonization of peatbogs which further increases shrub growth. These facilitative effects seem to be stronger under warmer conditions suggesting that a higher frequency of warmer and dry summers may lead to stronger positive interactions between shrubs and trees that could eventually facilitate a shift from moss to tree-dominated systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 11 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Victoria Marin-Burgos; Joy S. Clancy;Background: The global palm oil market experienced a remarkable boom since the year 2000. Since palm oil can be used for biodiesel production, the global expansion of oil palm cultivation has been associated with the global biofuel boom. Biofuel policies—especially those adopted in the European Union (EU)—have been blamed for the socio-environmental impacts of oil palm expansion. We explore how the global biofuel boom interacts with national geographies and social-economic and political processes to produce country-specific trajectories of biofuel crops expansion. We analyse the expansion of oil palm cultivation in Colombia between 2000 and 2010 from a political ecology perspective. Methods: The analysis is based on a framework that positions expansion of commodity frontiers within the ‘space-of-flows’ and the ‘space-of-place’. Through this approach, we identify the markets and geographies that define the country-specific trajectories of expansion of oil palm in Colombia, and their connections with general patterns of land control. The empirical analysis is based on primary data collected during fieldwork, and on an extensive review of secondary data about the palm oil sector and the socio-environmental effects of oil palm expansion in the country. Results: The contemporary oil palm expansion in Colombia was not specifically influenced by the international biofuel market. Expansion was characterized by an increasing production of palm oil for biodiesel, to supply a policy-driven national biofuel market controlled by national palm oil producers. The evidence shows that this oil palm expansion proceeded through a variety of land control practices that constitute forms of ‘accumulation by dispossession’ and ‘assimilation’. These are embedded in contextual factors that include the agrarian history of Colombia, the armed conflict, and government policies. Conclusions: Our study shows that the ways in which expansion of biofuel crops unfold in each producing country depend not only on the global biofuel market. They are also shaped by the country-specific geographies and political economies. Therefore, research and policies on the global expansion of energy crops should account for the complex and interrelated factors that mediate the specific ways in which the global demand for biofuels creates biofuel crop booms at country level.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy, Sustainability and SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-017-0123-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy, Sustainability and SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-017-0123-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu