- home
- Search
- Energy Research
- 11. Sustainability
- 1. No poverty
- FI
- PK
- Aalto University
- Energy Research
- 11. Sustainability
- 1. No poverty
- FI
- PK
- Aalto University
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Informa UK Limited Authors: Lu, Tao; Viljanen; Martti; Lü, Xiaoshu;With increasing concern over global climate change and rapid rise in energy consumption on the data-driven market, data centres are an important renewable energy target. As cooling contributes a substantial portion of the energy use of data centres, minimising the cooling energy demand in data centres is one of the main objectives for improving renewable energy. This paper investigates overall energy consumption and the energy efficiency of the cooling system for a data centre in Finland as a case study. The temporal energy consumption characteristics, cooling infrastructure and operation of the data centre are analysed. The main problems associated with cooling energy efficiency and the factors that may contribute toward higher efficiency are identified and further suggestions are put forward. Results are presented of an extensive evaluation of the energy performance of the study data centre with a view to energy recovery. The conclusion we can draw is that even though the analysed data centre demonstrat...
International Journa... arrow_drop_down International Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/2093761x.2012.696323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/2093761x.2012.696323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Andelin, Mia; Airaksinen, Miimu; Saari; Arto; Sekki, Tiina;The building sector contributes up to 30% of global annual greenhouse gas emissions and consumes up to 40% of all energy. Failure to encourage energy-efficiency and low-carbon in new builds or retrofitting will lock countries into the disadvantages of poor performing buildings for decades. The journey towards low-carbon and energy efficient buildings starts with good design, commissioning and measuring. The share of energy costs can be up to 50% of all maintenance costs [7] in Finland. In the studied buildings the average costs were 39% for daycare centres and 45% for schools. Since the share of energy costs is remarkable in maintenance, it is important to find out the most concrete indicators to measure energy efficiency in practice. This study explores ways in which building usage and occupancy influences the energy cost in Finnish daycare centres and school buildings. This study shows that energy costs vary a lot between different energy efficiency indicators, i.e. there is great variation in energy costs regardless of the building age and when child or student density varies. Results indicated that actual use of space is profiled in the operational phase where the energy costs variation is remarkable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Mar 2021 FinlandPublisher:Elsevier BV Funded by:AKA | Creative adaptation to wi..., AKA | Decentralizing Finland’s ...AKA| Creative adaptation to wicked socio-environmental disruptions / Consortium: WISE ,AKA| Decentralizing Finland’s energy regime: The triggers and dynamics of transition / Consortium: DEFENDSimon Bolwig; Gatis Bazbauers; Antje Klitkou; Peter D. Lund; Andra Blumberga; Armands Gravelsins; Dagnija Blumberga;Abstract The aim of this review is to discuss how quantitative modelling of energy scenarios for sustainable energy transition pathways can be made more realistic by taking into account insights from the socio-technical and related literatures. The proposition is that an enriched modelling approach would focus not just on technology development and deployment, but also on feedback loops, learning processes, policy and governance, behavioural changes, the interlinkages between the energy sector and other economic sectors, and infrastructure development. The review discusses a range of socio-technical concepts with a view to how they can enrich the understanding and modelling of highly complex dynamic systems such as flexible energy systems with high shares of variable renewable energy. In this context, application of system dynamics modelling (SDM) for the analysis of energy transitions is also introduced by describing the differences between SDM and a traditional modelling approach that uses econometric and linear programming methods. A conceptual framework for this type of modelling is provided by using causal loop diagrams. The diagrams illustrate the endogenous approach of SDM – understanding and modelling the structure of a system, which is responsible for its dynamic behaviour. SDM can also capture the co-evolution of economic, policy, technology, and behavioural factors over sufficiently long time periods, which is necessary for the analysis of transition pathway dynamics. In this regard, the review summarises how socio-technical concepts can be approached in SDM and why they are relevant for the analysis of flexibility in energy systems. From a computational point of view, it could be beneficial to combine SDM with technologically detailed energy system optimization models and that could be a way forward for achieving more realistic, non-linear quantitative modelling of sustainable energy transitions.
Renewable and Sustai... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FinlandPublisher:IWA Publishing Ukkonen, Petri; Mulas, Michela; Mikola; Anna; Poyry, Lauri;pmid: 34928854
Abstract Energy costs in the wastewater industry are increasing due to increasing trends in electricity rates and more stringent requirements for effluent quality. Wastewater aeration process is typically the largest energy consumer of the treatment plant and the optimization of the aeration process can offer significant savings for the wastewater treatment plants (WWTPs). Utilization of dynamic models can offer optimization solutions for improving the energy efficiency and process performance. In this work a simplified modelling approach emphasizing the control valves and the blowers is tested by developing aeration system models for two Finnish WWTPs. The developed model requires calibration of only a single parameter and the results from the simulations showed that reasonable estimations of the aeration systems energy demand could be made with a limited knowledge on the details of the physical system. The promising results highlight the strong influence of the control valve positioning to the whole system and indicate that airflow distribution along the system could be estimated simply from the positioning of the valves. The presented modelling approach allows the comparison between different blower and control valve alternatives during operation and for the process upgrades and offers prospect for improving the aeration operation control strategies.
Water Science and Te... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2021.481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Water Science and Te... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2021.481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:MDPI AG Authors: Säynäjoki, Antti; Junnila; Seppo; Heinonen, Jukka;doi: 10.3390/su3081170
Buildings account for nearly 50% of all greenhouse gases globally. While this has been widely recognized, the GHG mitigation strategies have traditionally concentrated on reducing the use phase emissions, as over 90% of the emissions are generated during the use phase according to several studies. However, two current developments increase the importance of the construction phase emissions and the embodied emissions of the building materials. Firstly, the improvements in the energy efficiency of buildings directly increase the relative share of the construction phase emissions. Secondly, the notification of the temporal allocation of the emissions increases the importance of the carbon spike from construction. While these perspectives have been noted, few studies exist that combine the two perspectives of the construction and the use phase. In this paper, we analyze the implications of low-carbon residential construction on the life cycle emissions of a residential area with a case study. Furthermore, we demonstrate that when the temporal allocation of the emissions is taken into account, the construction phase emissions can hinder or even reverse the carbon mitigation effect of low-carbon buildings for decades.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su3081170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su3081170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FinlandPublisher:American Institute of Mathematical Sciences (AIMS) Authors: Hurme, Markku; Oinas; Pekka; Kajaste-Rudnitskaja, Raili;The growing demand for methanol as fuel and global competition for resources are key drivers behind the need to find new routes for the production of bulk chemicals such as methanol. Widening the resource base is also linked to the increasing concentrations of methane in the atmosphere. Furthermore, managing greenhouse gas emissions is vital in developing new technologies. This paper compares production routes for methanol based on a cradle-to-gate life cycle assessment (LCA). The LCA is limited to the impact categories of global warming potential (GWP100) and energy use. The highest GWP100 value of 2.97 kg CO2eq/kg CH3OH is for methanol from coal, and the lowest, negative emission of 0.99 kg CO2eq/kg CH3OH is for methanol in co-production with renewable corn ethanol. A comparison of production routes is performed using the carbon dioxide equivalent abatement cost, and the production cost of methanol. The best performing technology on both production cost and GWP100 is methanol produced by gasification from wood biomass. The factors affecting the results are addressed. >
AIMS Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.6.1074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AIMS Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.6.1074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Kaiser Ahmed; Petri Pylsy; Jarek Kurnitski; Jarek Kurnitski; Andrea Ferrantelli; Andrea Ferrantelli;Abstract We consider domestic hot water (DHW) consumption hourly data for Finnish apartments in November and August. Using datasets obtained in a previous work, we formulate a bottom-up model to quantify correlations in the consumption patterns, which are discerned by a different number of occupants for both weekday (WD) and weekend (WE). The analytical formulas thus obtained describe accurately the hourly consumption of any specific dataset. In particular, we can generate the consumption curves for unknown datasets and derive quantitatively the correlations between occupant groups and different seasons. We explain this procedure into details, define the key variables of the model and validate it against the measurements. Our quantitative results are immediately applicable to simulation tools for energy investigations and sizing of heating systems in Finland or areas with similar occupant behavior. More generally, the analytical, inductive method here introduced could be adapted to DHW studies concerning other geographic areas as well. We also argue that this simple, yet effective formalism might also be extended to other engineering contexts that are not strictly related to energy consumption. For example, the main idea could be developed and adapted to those disciplines where understanding dataset correlations constitutes an important investigation tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:MDPI AG Ottelin, Juudit; Heinonen, Jukka; Junnila; Seppo; Laine, Jani;doi: 10.3390/su9101801
Climate change mitigation is an important goal for cities globally. Energy production contributes more than half of the global greenhouse gas emissions, and thus the mitigation potential of local municipal energy systems is important for cities to recognize. The purpose of the study is to analyze the role of local municipal energy systems in the consumption-based carbon footprint of a city resident. The research supplements the previous carbon footprint assessments of city residents with an energy system implication analysis. The study includes 20 of the largest cities in Finland. The main findings of the study are as follows: first, the municipal combined heat and power energy system contributes surprisingly little (on average 18%) to the direct carbon footprint of city residents, supporting some previous findings about a high degree of outsourcing of emissions in cities in developed countries. Second, when indirect emissions (i.e., the implication of a municipal energy system on the national energy system) are allocated to city residents, the significance of the local energy system increases substantially to 32%. Finally, without the benefits of local combined heat and power technology based electricity consumption, the carbon footprints would have increased by an additional 13% to 47% due to the emissions from compensatory electricity production. The results also show that the direct application of consumption-based carbon assessment would imply a relatively low significance for municipal energy solutions. However, with a broader understanding of energy system dynamics, the significance of municipal energy increases substantially. The results emphasize the importance of the consequential energy system implications, which is typically left out of the evaluations of consumption-based carbon footprints.
Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9101801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9101801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:MDPI AG Wang, Teng; Chen, Zhirong; Hong, Jinlong; Liao, Zhen; Wang, Di; Yuan, Dongdong; Zhang, Yufei; Falchetto; Augusto Cannone;doi: 10.3390/su151612190
With the increasing demand for improved road performance and sustainable development, modified asphalt is increasingly being used in pavement construction. This study investigates the preparation and properties of a novel high-viscosity modified asphalt. Firstly, different contents of novel thermoplastic rubber (NTPR) were mixed with neat asphalt to prepare high-viscosity modified asphalt (HVA). Then, the basic physical properties containing penetration, a softening point, ductility, and viscosity were conducted. Moreover, the rheological properties of the HVA before and after aging were analyzed via a dynamic shear rheometer test and a bending beam rheometer test. Finally, the dispersity of the modifier in HVA was analyzed via fluorescence microscopy. The results show that adding the NTPR restricts the flow of asphalt to a certain extent and improves the high temperature performance of asphalt. Furthermore, the apparent viscosity of HVA with various contents increases less and is always less than 3 Pa·s. Although adding NTPR makes the asphalt brittle, the HVA can meet the requirements when the NTPR is from 6% to 11%. With the increase in the NTPR, the modifier forms a mesh structure in the asphalt, enhancing its stability. Considering the above results, HVA with 10~11% of NTPR is recommended because it has better comprehensive properties.
Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:AKA | Creative adaptation to wi...AKA| Creative adaptation to wicked socio-environmental disruptions / Consortium: WISEMikkola, Jani; Jasiūnas, Justinas; Lund; Peter, D.; Arabzadeh, Vahid;pmid: 32090816
This paper presents deep decarbonization strategies for city-level energy systems. Helsinki city is used as a case in the analysis. The strategies are mainly based on extensive electrification employing renewable electricity, storage, and sector-coupling strategies. We perform energy, economic, and resilience analyses for the different cases. An energy balance model with 1-h resolution is used to optimize the energy system on macro-scale, while a MILP-algorithm is used for micro-level optimization of operation of individual plants against different criteria. The results indicate that a zero-carbon energy system is feasible by 2050, but it would also require coupling to the exogenous energy system (national electricity market) to balance mismatches. Power-to-heat coupling, or storage alone would not be adequate. As an example of system dynamics limitations, with a wind power capacity of 1.5 GW corresponding to 56% of the annual electricity demand in Helsinki, 90% of the wind electricity can be used locally in the different sectors, but the rest needs coupling to the exogenous market due to mismatch and plant limitations. The decarbonization strategies with increasing variable renewable energy production generally improve the resilience of the energy system, but with some concerns to adequacy of peak production and electricity dependency of heating.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Informa UK Limited Authors: Lu, Tao; Viljanen; Martti; Lü, Xiaoshu;With increasing concern over global climate change and rapid rise in energy consumption on the data-driven market, data centres are an important renewable energy target. As cooling contributes a substantial portion of the energy use of data centres, minimising the cooling energy demand in data centres is one of the main objectives for improving renewable energy. This paper investigates overall energy consumption and the energy efficiency of the cooling system for a data centre in Finland as a case study. The temporal energy consumption characteristics, cooling infrastructure and operation of the data centre are analysed. The main problems associated with cooling energy efficiency and the factors that may contribute toward higher efficiency are identified and further suggestions are put forward. Results are presented of an extensive evaluation of the energy performance of the study data centre with a view to energy recovery. The conclusion we can draw is that even though the analysed data centre demonstrat...
International Journa... arrow_drop_down International Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/2093761x.2012.696323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012Data sources: VIRTAInternational Journal of Sustainable Building Technology and Urban DevelopmentArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/2093761x.2012.696323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Andelin, Mia; Airaksinen, Miimu; Saari; Arto; Sekki, Tiina;The building sector contributes up to 30% of global annual greenhouse gas emissions and consumes up to 40% of all energy. Failure to encourage energy-efficiency and low-carbon in new builds or retrofitting will lock countries into the disadvantages of poor performing buildings for decades. The journey towards low-carbon and energy efficient buildings starts with good design, commissioning and measuring. The share of energy costs can be up to 50% of all maintenance costs [7] in Finland. In the studied buildings the average costs were 39% for daycare centres and 45% for schools. Since the share of energy costs is remarkable in maintenance, it is important to find out the most concrete indicators to measure energy efficiency in practice. This study explores ways in which building usage and occupancy influences the energy cost in Finnish daycare centres and school buildings. This study shows that energy costs vary a lot between different energy efficiency indicators, i.e. there is great variation in energy costs regardless of the building age and when child or student density varies. Results indicated that actual use of space is profiled in the operational phase where the energy costs variation is remarkable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Mar 2021 FinlandPublisher:Elsevier BV Funded by:AKA | Creative adaptation to wi..., AKA | Decentralizing Finland’s ...AKA| Creative adaptation to wicked socio-environmental disruptions / Consortium: WISE ,AKA| Decentralizing Finland’s energy regime: The triggers and dynamics of transition / Consortium: DEFENDSimon Bolwig; Gatis Bazbauers; Antje Klitkou; Peter D. Lund; Andra Blumberga; Armands Gravelsins; Dagnija Blumberga;Abstract The aim of this review is to discuss how quantitative modelling of energy scenarios for sustainable energy transition pathways can be made more realistic by taking into account insights from the socio-technical and related literatures. The proposition is that an enriched modelling approach would focus not just on technology development and deployment, but also on feedback loops, learning processes, policy and governance, behavioural changes, the interlinkages between the energy sector and other economic sectors, and infrastructure development. The review discusses a range of socio-technical concepts with a view to how they can enrich the understanding and modelling of highly complex dynamic systems such as flexible energy systems with high shares of variable renewable energy. In this context, application of system dynamics modelling (SDM) for the analysis of energy transitions is also introduced by describing the differences between SDM and a traditional modelling approach that uses econometric and linear programming methods. A conceptual framework for this type of modelling is provided by using causal loop diagrams. The diagrams illustrate the endogenous approach of SDM – understanding and modelling the structure of a system, which is responsible for its dynamic behaviour. SDM can also capture the co-evolution of economic, policy, technology, and behavioural factors over sufficiently long time periods, which is necessary for the analysis of transition pathway dynamics. In this regard, the review summarises how socio-technical concepts can be approached in SDM and why they are relevant for the analysis of flexibility in energy systems. From a computational point of view, it could be beneficial to combine SDM with technologically detailed energy system optimization models and that could be a way forward for achieving more realistic, non-linear quantitative modelling of sustainable energy transitions.
Renewable and Sustai... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FinlandPublisher:IWA Publishing Ukkonen, Petri; Mulas, Michela; Mikola; Anna; Poyry, Lauri;pmid: 34928854
Abstract Energy costs in the wastewater industry are increasing due to increasing trends in electricity rates and more stringent requirements for effluent quality. Wastewater aeration process is typically the largest energy consumer of the treatment plant and the optimization of the aeration process can offer significant savings for the wastewater treatment plants (WWTPs). Utilization of dynamic models can offer optimization solutions for improving the energy efficiency and process performance. In this work a simplified modelling approach emphasizing the control valves and the blowers is tested by developing aeration system models for two Finnish WWTPs. The developed model requires calibration of only a single parameter and the results from the simulations showed that reasonable estimations of the aeration systems energy demand could be made with a limited knowledge on the details of the physical system. The promising results highlight the strong influence of the control valve positioning to the whole system and indicate that airflow distribution along the system could be estimated simply from the positioning of the valves. The presented modelling approach allows the comparison between different blower and control valve alternatives during operation and for the process upgrades and offers prospect for improving the aeration operation control strategies.
Water Science and Te... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2021.481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Water Science and Te... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2021.481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:MDPI AG Authors: Säynäjoki, Antti; Junnila; Seppo; Heinonen, Jukka;doi: 10.3390/su3081170
Buildings account for nearly 50% of all greenhouse gases globally. While this has been widely recognized, the GHG mitigation strategies have traditionally concentrated on reducing the use phase emissions, as over 90% of the emissions are generated during the use phase according to several studies. However, two current developments increase the importance of the construction phase emissions and the embodied emissions of the building materials. Firstly, the improvements in the energy efficiency of buildings directly increase the relative share of the construction phase emissions. Secondly, the notification of the temporal allocation of the emissions increases the importance of the carbon spike from construction. While these perspectives have been noted, few studies exist that combine the two perspectives of the construction and the use phase. In this paper, we analyze the implications of low-carbon residential construction on the life cycle emissions of a residential area with a case study. Furthermore, we demonstrate that when the temporal allocation of the emissions is taken into account, the construction phase emissions can hinder or even reverse the carbon mitigation effect of low-carbon buildings for decades.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su3081170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su3081170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FinlandPublisher:American Institute of Mathematical Sciences (AIMS) Authors: Hurme, Markku; Oinas; Pekka; Kajaste-Rudnitskaja, Raili;The growing demand for methanol as fuel and global competition for resources are key drivers behind the need to find new routes for the production of bulk chemicals such as methanol. Widening the resource base is also linked to the increasing concentrations of methane in the atmosphere. Furthermore, managing greenhouse gas emissions is vital in developing new technologies. This paper compares production routes for methanol based on a cradle-to-gate life cycle assessment (LCA). The LCA is limited to the impact categories of global warming potential (GWP100) and energy use. The highest GWP100 value of 2.97 kg CO2eq/kg CH3OH is for methanol from coal, and the lowest, negative emission of 0.99 kg CO2eq/kg CH3OH is for methanol in co-production with renewable corn ethanol. A comparison of production routes is performed using the carbon dioxide equivalent abatement cost, and the production cost of methanol. The best performing technology on both production cost and GWP100 is methanol produced by gasification from wood biomass. The factors affecting the results are addressed. >
AIMS Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.6.1074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AIMS Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.6.1074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Kaiser Ahmed; Petri Pylsy; Jarek Kurnitski; Jarek Kurnitski; Andrea Ferrantelli; Andrea Ferrantelli;Abstract We consider domestic hot water (DHW) consumption hourly data for Finnish apartments in November and August. Using datasets obtained in a previous work, we formulate a bottom-up model to quantify correlations in the consumption patterns, which are discerned by a different number of occupants for both weekday (WD) and weekend (WE). The analytical formulas thus obtained describe accurately the hourly consumption of any specific dataset. In particular, we can generate the consumption curves for unknown datasets and derive quantitatively the correlations between occupant groups and different seasons. We explain this procedure into details, define the key variables of the model and validate it against the measurements. Our quantitative results are immediately applicable to simulation tools for energy investigations and sizing of heating systems in Finland or areas with similar occupant behavior. More generally, the analytical, inductive method here introduced could be adapted to DHW studies concerning other geographic areas as well. We also argue that this simple, yet effective formalism might also be extended to other engineering contexts that are not strictly related to energy consumption. For example, the main idea could be developed and adapted to those disciplines where understanding dataset correlations constitutes an important investigation tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:MDPI AG Ottelin, Juudit; Heinonen, Jukka; Junnila; Seppo; Laine, Jani;doi: 10.3390/su9101801
Climate change mitigation is an important goal for cities globally. Energy production contributes more than half of the global greenhouse gas emissions, and thus the mitigation potential of local municipal energy systems is important for cities to recognize. The purpose of the study is to analyze the role of local municipal energy systems in the consumption-based carbon footprint of a city resident. The research supplements the previous carbon footprint assessments of city residents with an energy system implication analysis. The study includes 20 of the largest cities in Finland. The main findings of the study are as follows: first, the municipal combined heat and power energy system contributes surprisingly little (on average 18%) to the direct carbon footprint of city residents, supporting some previous findings about a high degree of outsourcing of emissions in cities in developed countries. Second, when indirect emissions (i.e., the implication of a municipal energy system on the national energy system) are allocated to city residents, the significance of the local energy system increases substantially to 32%. Finally, without the benefits of local combined heat and power technology based electricity consumption, the carbon footprints would have increased by an additional 13% to 47% due to the emissions from compensatory electricity production. The results also show that the direct application of consumption-based carbon assessment would imply a relatively low significance for municipal energy solutions. However, with a broader understanding of energy system dynamics, the significance of municipal energy increases substantially. The results emphasize the importance of the consequential energy system implications, which is typically left out of the evaluations of consumption-based carbon footprints.
Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9101801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9101801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:MDPI AG Wang, Teng; Chen, Zhirong; Hong, Jinlong; Liao, Zhen; Wang, Di; Yuan, Dongdong; Zhang, Yufei; Falchetto; Augusto Cannone;doi: 10.3390/su151612190
With the increasing demand for improved road performance and sustainable development, modified asphalt is increasingly being used in pavement construction. This study investigates the preparation and properties of a novel high-viscosity modified asphalt. Firstly, different contents of novel thermoplastic rubber (NTPR) were mixed with neat asphalt to prepare high-viscosity modified asphalt (HVA). Then, the basic physical properties containing penetration, a softening point, ductility, and viscosity were conducted. Moreover, the rheological properties of the HVA before and after aging were analyzed via a dynamic shear rheometer test and a bending beam rheometer test. Finally, the dispersity of the modifier in HVA was analyzed via fluorescence microscopy. The results show that adding the NTPR restricts the flow of asphalt to a certain extent and improves the high temperature performance of asphalt. Furthermore, the apparent viscosity of HVA with various contents increases less and is always less than 3 Pa·s. Although adding NTPR makes the asphalt brittle, the HVA can meet the requirements when the NTPR is from 6% to 11%. With the increase in the NTPR, the modifier forms a mesh structure in the asphalt, enhancing its stability. Considering the above results, HVA with 10~11% of NTPR is recommended because it has better comprehensive properties.
Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:AKA | Creative adaptation to wi...AKA| Creative adaptation to wicked socio-environmental disruptions / Consortium: WISEMikkola, Jani; Jasiūnas, Justinas; Lund; Peter, D.; Arabzadeh, Vahid;pmid: 32090816
This paper presents deep decarbonization strategies for city-level energy systems. Helsinki city is used as a case in the analysis. The strategies are mainly based on extensive electrification employing renewable electricity, storage, and sector-coupling strategies. We perform energy, economic, and resilience analyses for the different cases. An energy balance model with 1-h resolution is used to optimize the energy system on macro-scale, while a MILP-algorithm is used for micro-level optimization of operation of individual plants against different criteria. The results indicate that a zero-carbon energy system is feasible by 2050, but it would also require coupling to the exogenous energy system (national electricity market) to balance mismatches. Power-to-heat coupling, or storage alone would not be adequate. As an example of system dynamics limitations, with a wind power capacity of 1.5 GW corresponding to 56% of the annual electricity demand in Helsinki, 90% of the wind electricity can be used locally in the different sectors, but the rest needs coupling to the exogenous market due to mismatch and plant limitations. The decarbonization strategies with increasing variable renewable energy production generally improve the resilience of the energy system, but with some concerns to adequacy of peak production and electricity dependency of heating.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.110090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu