- home
- Search
- Energy Research
- 2021-2025
- GB
- DE
- RU
- Energies
- Energy Research
- 2021-2025
- GB
- DE
- RU
- Energies
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryAuthors: Shaobo Liu; Kang He; Xiaofeng Pan; Yangyang Hu;doi: 10.3390/en16104142
With the continuous development of intelligent transportation technologies, new ways of energy usage in transportation continue to emerge, which puts forward new requirements for the planning and design of energy systems. However, comprehensive analyses on the characteristics of transportation energy systems and the development trend of energy usage patterns brought by intelligent technologies have rarely been carried out so far. This paper explores this subject by reviewing the recent development and utilization of intelligent technologies in the transportation system and its impacts on energy usage. This review is carried out from three aspects, covering the representative intelligent transportation and energy technologies on vehicles, infrastructures and systems. The scope is limited within road, railway and water transport domains, with a focus on the recent developments in China as a representative. In terms of vehicles, the development trend of the power systems for new energy vehicles, the characteristics of energy usages in electric vehicles and the effects on energy saving and emission reduction are summarized. In terms of infrastructures, new technologies on smart road, smart port, intelligent railway energy system and the usage of clear energy on electric grid for transportation are reviewed, with the consideration of their potential influences on energy usages and the energy consumption characteristics of typical facilities also being analyzed. As for the transportation system, this review has focused on intelligent and connected transportation systems, train control and autonomous systems, and intelligent shipping system, with the emphasis on the energy saving and emission reduction effects of applying these intelligent technologies. The overall development trend of the transportation energy system is then analyzed based on the above materials, in particular, the future energy usage patterns in transportation system are given and the major challenges and obstacles approaching the future scenarios are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Authors: Salman Siddiqui; Mark Barrett; John Macadam;doi: 10.3390/en14144078
The decarbonisation of heating in the United Kingdom is likely to entail both the mass adoption of heat pumps and widespread development of district heating infrastructure. Estimation of the spatially disaggregated heat demand is needed for both electrical distribution network with electrified heating and for the development of district heating. The temporal variation of heat demand is important when considering the operation of district heating, thermal energy storage and electrical grid storage. The difference between the national and urban heat demands profiles will vary due to the type and occupancy of buildings leading to temporal variations which have not been widely surveyed. This paper develops a high-resolution spatiotemporal heat load model for Great Britain (GB: England, Scotland a Wales) by identifying the appropriate datasets, archetype segmentation and characterisation for the domestic and nondomestic building stock. This is applied to a thermal model and calibrated on the local scale using gas consumption statistics. The annual GB heat demand was in close agreement with other estimates and the peak demand was 219 GWth. The urban heat demand was found to have a lower peak to trough ratio than the average national demand profile. This will have important implications for the uptake of heating technologies and design of district heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Timur Nizamutdinov; Evgeny Abakumov; Eugeniya Morgun; Rostislav Loktev; Roman Kolesnikov;doi: 10.3390/en14144080
This research looked at the state of soils faced with urbanization processes in the Arctic region of the Yamal-Nenets Autonomous District (YANAO). Soils recently used in agriculture, which are now included in the infrastructure of the cities of Salekhard, Labytnangi, Kharsaim, and Aksarka in the form of various parks and public gardens were studied. Morphological, physico-chemical, and agrochemical studies of selected soils were conducted. Significant differences in fertility parameters between urbanized abandoned agricultural soils and mature soils of the region were revealed. The quality of soil resources was also evaluated in terms of their ecotoxicology condition, namely, the concentrations of trace metals in soils were determined and their current condition was assessed using calculations of various individual and complex soil quality indices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Amged Al Ezzi; Miqdam T. Chaichan; Hasan S. Majdi; Ali H. A. Al-Waeli; Hussein A. Kazem; Kamaruzzaman Sopian; Mohammed A. Fayad; Hayder A. Dhahad; Talal Yusaf;doi: 10.3390/en15113870
Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Netherlands, United KingdomPublisher:MDPI AG Rocio de la Torre; Bhakti S. Onggo; Canan G. Corlu; Maria Nogal; Angel A. Juan;doi: 10.3390/en14041138
handle: 10609/147605
The prevailing need for a more sustainable management of natural resources depends not only on the decisions made by governments and the will of the population, but also on the knowledge of the role of energy in our society and the relevance of preserving natural resources. In this sense, critical work is being done to instill key concepts—such as the circular economy and sustainable energy—in higher education institutions. In this way, it is expected that future professionals and managers will be aware of the importance of energy optimization, and will learn a series of computational methods that can support the decision-making process. In the context of higher education, this paper reviews the main trends and challenges related to the concepts of circular economy and sustainable energy. Besides, we analyze the role of simulation and serious games as a learning tool for the aforementioned concepts. Finally, the paper provides insights and discusses open research opportunities regarding the use of these computational tools to incorporate circular economy concepts in higher education degrees. Our findings show that, while efforts are being made to include these concepts in current programs, there is still much work to be done, especially from the point of view of university management. In addition, the analysis of the teaching methodologies analyzed shows that, although their implementation has been successful in favoring the active learning of students, their use (especially that of serious games) is not yet widespread.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 89 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 FinlandPublisher:MDPI AG Girgibo, Nebiyu; Mäkiranta, Anne; Lü, Xiaoshu; Hiltunen; Erkki;doi: 10.3390/en15020435
Suvilahti, a suburb of the city of Vaasa in western Finland, was the first area to use seabed sediment heat as the main source of heating for a high number of houses. Moreover, in the same area, a unique land uplift effect is ongoing. The aim of this paper is to solve the challenges and find opportunities caused by global warming by utilizing seabed sediment energy as a renewable heat source. Measurement data of water and air temperature were analyzed, and correlations were established for the sediment temperature data using Statistical Analysis System (SAS) Enterprise Guide 7.1. software. The analysis and provisional forecast based on the autoregression integrated moving average (ARIMA) model revealed that air and water temperatures show incremental increases through time, and that sediment temperature has positive correlations with water temperature with a 2-month lag. Therefore, sediment heat energy is also expected to increase in the future. Factor analysis validations show that the data have a normal cluster and no particular outliers. This study concludes that sediment heat energy can be considered in prominent renewable production, transforming climate change into a useful solution, at least in summertime.
CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:UKRI | Supergen Energy Networks ..., UKRI | System-wide Probabilistic..., UKRI | System-wide Probabilistic...UKRI| Supergen Energy Networks hub 2018 ,UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| System-wide Probabilistic Energy ForecastingAuthors: Jethro Browell; Ciaran Gilbert;doi: 10.3390/en15103645
Electricity imbalance pricing provides the ultimate incentive for generators and suppliers to contract with one another ahead of time and deliver against their obligations. As delivery time approaches, traders must judge whether to trade-out a position or settle it in the balancing market at the as-yet-unknown imbalance price. Forecasting the imbalance price (and related volumes) is therefore a necessity in short-term markets. However, this topic has received surprisingly little attention in the academic literature despite clear need by practitioners. Furthermore, the emergence of algorithmic trading demands automated forecasting and decision-making, with those best able to extract predictive information from available data gaining a competitive advantage. Here we present the case for developing imbalance price forecasting methods and provide motivating examples from the Great Britain’s balancing market, demonstrating forecast skill and value.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 28 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Funded by:UKRI | Development of Innovative...UKRI| Development of Innovative Off-Grid Energy Storage for Sub-Saharan Africa using portable and affordable Na-ion Battery SystemAuthors: Alireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; +1 AuthorsAlireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; Nduka Nnamdi Ekere;doi: 10.3390/en16186525
handle: 2436/625344
Achieving the global electricity demand and meeting the United Nations sustainable development target on reliable and sustainable energy supply by 2050 are crucial. Portable energy storage (PES) units, powered by solid-state battery cells, can offer a sustainable and cost-effective solution for regions with limited power-grid access. However, operating in high-dust and high-temperature environments presents challenges that require effective thermal management solutions. This paper is a comprehensive review of thermal management systems for PES units, with a specific focus on addressing the challenge of overheating in airtight designs. The review of various active and passive cooling systems is conducted through extensive study of the relevant literature, which is significant in providing insights into the operation, performance parameters, and design options for different cooling system technologies. The findings from this review show heat pipe (HP) technologies as key cooling-system solutions for airtight PES units. Specifically, loop and oscillating HPs, as well as the vapour chamber, offer desirable features such as compactness, low cost, and high thermal conductivity that make them superior to other alternatives for the cooling systems in PES. The insights and knowledge generated via this review will help facilitate the design and development of innovative, efficient, and reliable PES units, thereby contributing to the advancement of off-grid renewable energy applications and enabling sustainable power solutions worldwide. Furthermore, an appropriate design of PES units can help in reducing capital and maintenance costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Fernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; +2 AuthorsFernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; Terrence Lynn Chambers; Afef Fekih;doi: 10.3390/en15176274
Freshwater scarcity is a significant concern due to climate change in some regions of Brazil; likewise, evaporation rates have increased over the years. Floating photovoltaic systems can reduce water evaporation from reservoirs by suppressing the evaporating area on the water surface. This work evaluated the effects of floating photovoltaic systems on water evaporation rates in the Passaúna Reservoir, southeastern Brazil. Meteorological data such as temperature, humidity, wind speed, and solar radiation were used to estimate the rate of water evaporation using FAO Penman–Monteith, Linacre, Hargreaves–Samani, Rohwer, and Valiantzas methods. The methods were tested with the Kruskal–Wallis test, including measured evaporation from the nearest meteorological station to determine whether there were significant differences between the medians of the methods considering a 95% confidence level for hypothesis testing. All methods differed from the standard method recommended by the FAO Penman–Monteith. Simulations with more extensive coverage areas of the floating photovoltaic system were carried out to verify the relationship between the surface water coverage area and the evaporation reduction efficiency provided by the system and to obtain the avoided water evaporation volume. For the floating photovoltaic system with a coverage area of 1265.14 m2, an efficiency of 60.20% was obtained in reducing water evaporation; future expansions of the FPS were simulated with coverage areas corresponding to energy production capacities of 1 MWp, 2.5 MWp, and 5 MWp. The results indicated that for a floating photovoltaic system coverage area corresponding to 5 MWp of energy production capacity, the saved water volume would be enough to supply over 196 people for a year. More significant areas, such as covering up the entire available surface area of the Passaúna reservoir with a floating photovoltaic system, could save up to 2.69 hm3 of water volume annually, representing a more significant value for the public management of water resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | TRANSIT, EC | PROMISE, EC | JUMP2ExcelEC| TRANSIT ,EC| PROMISE ,EC| JUMP2ExcelSakshi Sharma; Vibhu Jately; Piyush Kuchhal; Peeyush Kala; Brian Azzopardi;doi: 10.3390/en16155679
The rapid increase in the penetration of photovoltaic (PV) power plants results in an increased risk of grid failure, primarily due to the intermittent nature of the plant. To overcome this problem, the flexible power point tracking (FPPT) algorithm has been proposed in the literature over the maximum power point tracking (MPPT) algorithm. These algorithms regulate the PV power to a certain value instead of continuously monitoring the maximum power point (MPP). The proposed work carries out a detailed comparative study of various constant power generation (CPG) control strategies. The control strategies are categorized in terms of current-, voltage-, and power-based tracking capabilities. The comparative analysis of various reported CPG/FPPT techniques was carried out. This analysis was based on some key performance indices, such as the type of control strategy, irradiance pattern, variation in G, region of operation, speed of tracking, steady-state power oscillations, drift severity scenario, partial shading scenario, implementation complexity, stability, fast dynamic response, robustness, reactive power, cost, and tracking efficiency. Among existing FPPT algorithms, model-based control has a superior performance in terms of tracking speed and low steady-state power oscillations, with a maximum tracking efficiency of 98.57%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryAuthors: Shaobo Liu; Kang He; Xiaofeng Pan; Yangyang Hu;doi: 10.3390/en16104142
With the continuous development of intelligent transportation technologies, new ways of energy usage in transportation continue to emerge, which puts forward new requirements for the planning and design of energy systems. However, comprehensive analyses on the characteristics of transportation energy systems and the development trend of energy usage patterns brought by intelligent technologies have rarely been carried out so far. This paper explores this subject by reviewing the recent development and utilization of intelligent technologies in the transportation system and its impacts on energy usage. This review is carried out from three aspects, covering the representative intelligent transportation and energy technologies on vehicles, infrastructures and systems. The scope is limited within road, railway and water transport domains, with a focus on the recent developments in China as a representative. In terms of vehicles, the development trend of the power systems for new energy vehicles, the characteristics of energy usages in electric vehicles and the effects on energy saving and emission reduction are summarized. In terms of infrastructures, new technologies on smart road, smart port, intelligent railway energy system and the usage of clear energy on electric grid for transportation are reviewed, with the consideration of their potential influences on energy usages and the energy consumption characteristics of typical facilities also being analyzed. As for the transportation system, this review has focused on intelligent and connected transportation systems, train control and autonomous systems, and intelligent shipping system, with the emphasis on the energy saving and emission reduction effects of applying these intelligent technologies. The overall development trend of the transportation energy system is then analyzed based on the above materials, in particular, the future energy usage patterns in transportation system are given and the major challenges and obstacles approaching the future scenarios are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Authors: Salman Siddiqui; Mark Barrett; John Macadam;doi: 10.3390/en14144078
The decarbonisation of heating in the United Kingdom is likely to entail both the mass adoption of heat pumps and widespread development of district heating infrastructure. Estimation of the spatially disaggregated heat demand is needed for both electrical distribution network with electrified heating and for the development of district heating. The temporal variation of heat demand is important when considering the operation of district heating, thermal energy storage and electrical grid storage. The difference between the national and urban heat demands profiles will vary due to the type and occupancy of buildings leading to temporal variations which have not been widely surveyed. This paper develops a high-resolution spatiotemporal heat load model for Great Britain (GB: England, Scotland a Wales) by identifying the appropriate datasets, archetype segmentation and characterisation for the domestic and nondomestic building stock. This is applied to a thermal model and calibrated on the local scale using gas consumption statistics. The annual GB heat demand was in close agreement with other estimates and the peak demand was 219 GWth. The urban heat demand was found to have a lower peak to trough ratio than the average national demand profile. This will have important implications for the uptake of heating technologies and design of district heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Timur Nizamutdinov; Evgeny Abakumov; Eugeniya Morgun; Rostislav Loktev; Roman Kolesnikov;doi: 10.3390/en14144080
This research looked at the state of soils faced with urbanization processes in the Arctic region of the Yamal-Nenets Autonomous District (YANAO). Soils recently used in agriculture, which are now included in the infrastructure of the cities of Salekhard, Labytnangi, Kharsaim, and Aksarka in the form of various parks and public gardens were studied. Morphological, physico-chemical, and agrochemical studies of selected soils were conducted. Significant differences in fertility parameters between urbanized abandoned agricultural soils and mature soils of the region were revealed. The quality of soil resources was also evaluated in terms of their ecotoxicology condition, namely, the concentrations of trace metals in soils were determined and their current condition was assessed using calculations of various individual and complex soil quality indices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Amged Al Ezzi; Miqdam T. Chaichan; Hasan S. Majdi; Ali H. A. Al-Waeli; Hussein A. Kazem; Kamaruzzaman Sopian; Mohammed A. Fayad; Hayder A. Dhahad; Talal Yusaf;doi: 10.3390/en15113870
Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Netherlands, United KingdomPublisher:MDPI AG Rocio de la Torre; Bhakti S. Onggo; Canan G. Corlu; Maria Nogal; Angel A. Juan;doi: 10.3390/en14041138
handle: 10609/147605
The prevailing need for a more sustainable management of natural resources depends not only on the decisions made by governments and the will of the population, but also on the knowledge of the role of energy in our society and the relevance of preserving natural resources. In this sense, critical work is being done to instill key concepts—such as the circular economy and sustainable energy—in higher education institutions. In this way, it is expected that future professionals and managers will be aware of the importance of energy optimization, and will learn a series of computational methods that can support the decision-making process. In the context of higher education, this paper reviews the main trends and challenges related to the concepts of circular economy and sustainable energy. Besides, we analyze the role of simulation and serious games as a learning tool for the aforementioned concepts. Finally, the paper provides insights and discusses open research opportunities regarding the use of these computational tools to incorporate circular economy concepts in higher education degrees. Our findings show that, while efforts are being made to include these concepts in current programs, there is still much work to be done, especially from the point of view of university management. In addition, the analysis of the teaching methodologies analyzed shows that, although their implementation has been successful in favoring the active learning of students, their use (especially that of serious games) is not yet widespread.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 89 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 FinlandPublisher:MDPI AG Girgibo, Nebiyu; Mäkiranta, Anne; Lü, Xiaoshu; Hiltunen; Erkki;doi: 10.3390/en15020435
Suvilahti, a suburb of the city of Vaasa in western Finland, was the first area to use seabed sediment heat as the main source of heating for a high number of houses. Moreover, in the same area, a unique land uplift effect is ongoing. The aim of this paper is to solve the challenges and find opportunities caused by global warming by utilizing seabed sediment energy as a renewable heat source. Measurement data of water and air temperature were analyzed, and correlations were established for the sediment temperature data using Statistical Analysis System (SAS) Enterprise Guide 7.1. software. The analysis and provisional forecast based on the autoregression integrated moving average (ARIMA) model revealed that air and water temperatures show incremental increases through time, and that sediment temperature has positive correlations with water temperature with a 2-month lag. Therefore, sediment heat energy is also expected to increase in the future. Factor analysis validations show that the data have a normal cluster and no particular outliers. This study concludes that sediment heat energy can be considered in prominent renewable production, transforming climate change into a useful solution, at least in summertime.
CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15020435Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:UKRI | Supergen Energy Networks ..., UKRI | System-wide Probabilistic..., UKRI | System-wide Probabilistic...UKRI| Supergen Energy Networks hub 2018 ,UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| System-wide Probabilistic Energy ForecastingAuthors: Jethro Browell; Ciaran Gilbert;doi: 10.3390/en15103645
Electricity imbalance pricing provides the ultimate incentive for generators and suppliers to contract with one another ahead of time and deliver against their obligations. As delivery time approaches, traders must judge whether to trade-out a position or settle it in the balancing market at the as-yet-unknown imbalance price. Forecasting the imbalance price (and related volumes) is therefore a necessity in short-term markets. However, this topic has received surprisingly little attention in the academic literature despite clear need by practitioners. Furthermore, the emergence of algorithmic trading demands automated forecasting and decision-making, with those best able to extract predictive information from available data gaining a competitive advantage. Here we present the case for developing imbalance price forecasting methods and provide motivating examples from the Great Britain’s balancing market, demonstrating forecast skill and value.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 28 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Funded by:UKRI | Development of Innovative...UKRI| Development of Innovative Off-Grid Energy Storage for Sub-Saharan Africa using portable and affordable Na-ion Battery SystemAuthors: Alireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; +1 AuthorsAlireza Eslami Majd; Fideline Tchuenbou-Magaia; Agnero M. Meless; David S. Adebayo; Nduka Nnamdi Ekere;doi: 10.3390/en16186525
handle: 2436/625344
Achieving the global electricity demand and meeting the United Nations sustainable development target on reliable and sustainable energy supply by 2050 are crucial. Portable energy storage (PES) units, powered by solid-state battery cells, can offer a sustainable and cost-effective solution for regions with limited power-grid access. However, operating in high-dust and high-temperature environments presents challenges that require effective thermal management solutions. This paper is a comprehensive review of thermal management systems for PES units, with a specific focus on addressing the challenge of overheating in airtight designs. The review of various active and passive cooling systems is conducted through extensive study of the relevant literature, which is significant in providing insights into the operation, performance parameters, and design options for different cooling system technologies. The findings from this review show heat pipe (HP) technologies as key cooling-system solutions for airtight PES units. Specifically, loop and oscillating HPs, as well as the vapour chamber, offer desirable features such as compactness, low cost, and high thermal conductivity that make them superior to other alternatives for the cooling systems in PES. The insights and knowledge generated via this review will help facilitate the design and development of innovative, efficient, and reliable PES units, thereby contributing to the advancement of off-grid renewable energy applications and enabling sustainable power solutions worldwide. Furthermore, an appropriate design of PES units can help in reducing capital and maintenance costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Fernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; +2 AuthorsFernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; Terrence Lynn Chambers; Afef Fekih;doi: 10.3390/en15176274
Freshwater scarcity is a significant concern due to climate change in some regions of Brazil; likewise, evaporation rates have increased over the years. Floating photovoltaic systems can reduce water evaporation from reservoirs by suppressing the evaporating area on the water surface. This work evaluated the effects of floating photovoltaic systems on water evaporation rates in the Passaúna Reservoir, southeastern Brazil. Meteorological data such as temperature, humidity, wind speed, and solar radiation were used to estimate the rate of water evaporation using FAO Penman–Monteith, Linacre, Hargreaves–Samani, Rohwer, and Valiantzas methods. The methods were tested with the Kruskal–Wallis test, including measured evaporation from the nearest meteorological station to determine whether there were significant differences between the medians of the methods considering a 95% confidence level for hypothesis testing. All methods differed from the standard method recommended by the FAO Penman–Monteith. Simulations with more extensive coverage areas of the floating photovoltaic system were carried out to verify the relationship between the surface water coverage area and the evaporation reduction efficiency provided by the system and to obtain the avoided water evaporation volume. For the floating photovoltaic system with a coverage area of 1265.14 m2, an efficiency of 60.20% was obtained in reducing water evaporation; future expansions of the FPS were simulated with coverage areas corresponding to energy production capacities of 1 MWp, 2.5 MWp, and 5 MWp. The results indicated that for a floating photovoltaic system coverage area corresponding to 5 MWp of energy production capacity, the saved water volume would be enough to supply over 196 people for a year. More significant areas, such as covering up the entire available surface area of the Passaúna reservoir with a floating photovoltaic system, could save up to 2.69 hm3 of water volume annually, representing a more significant value for the public management of water resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | TRANSIT, EC | PROMISE, EC | JUMP2ExcelEC| TRANSIT ,EC| PROMISE ,EC| JUMP2ExcelSakshi Sharma; Vibhu Jately; Piyush Kuchhal; Peeyush Kala; Brian Azzopardi;doi: 10.3390/en16155679
The rapid increase in the penetration of photovoltaic (PV) power plants results in an increased risk of grid failure, primarily due to the intermittent nature of the plant. To overcome this problem, the flexible power point tracking (FPPT) algorithm has been proposed in the literature over the maximum power point tracking (MPPT) algorithm. These algorithms regulate the PV power to a certain value instead of continuously monitoring the maximum power point (MPP). The proposed work carries out a detailed comparative study of various constant power generation (CPG) control strategies. The control strategies are categorized in terms of current-, voltage-, and power-based tracking capabilities. The comparative analysis of various reported CPG/FPPT techniques was carried out. This analysis was based on some key performance indices, such as the type of control strategy, irradiance pattern, variation in G, region of operation, speed of tracking, steady-state power oscillations, drift severity scenario, partial shading scenario, implementation complexity, stability, fast dynamic response, robustness, reactive power, cost, and tracking efficiency. Among existing FPPT algorithms, model-based control has a superior performance in terms of tracking speed and low steady-state power oscillations, with a maximum tracking efficiency of 98.57%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu