search
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
6,130 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • other engineering and technologies
  • 13. Climate action
  • SA
  • PK
  • BE

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wael H. Ahmed;

    Abstract Flow-accelerated corrosion (FAC) is a degradation mechanism that affects carbon steel piping in power plants. The failures and degradation due to FAC have necessitated numerous replacements in many power plants. Several computer codes around the world were developed as part of a systematic program or process to control FAC in power plant utilities. The typical plant model requires the input of the flow parameters, piping configuration and the plant water chemistry. The results on FAC rate are considered the key to proper selection of components for inspection. The lack of information on the effect of the upstream components located in the proximity limited the accuracy of the FAC prediction tools and hence will affect the accuracy in identifying potential inspection locations. In the present study 211 inspection data for 90° carbon steel elbows from several nuclear power plants were used to determine the effect of the proximity between two components on the FAC wear rate. The effect of the velocity as well as the distance between the elbows and the upstream components is discussed in the present analysis. Based on the analyzed trends obtained from the inspection data, significant increase in the wear rate of approximately 70% on average is identified to be due to the proximity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Nuclear En...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of Nuclear Energy
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    61
    citations61
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Nuclear En...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Annals of Nuclear Energy
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zia Ud Din;
    Zia Ud Din
    ORCID
    Harvested from ORCID Public Data File

    Zia Ud Din in OpenAIRE
    Zia Ud Din; orcid Zainal Alimuddin Zainal;
    Zainal Alimuddin Zainal
    ORCID
    Harvested from ORCID Public Data File

    Zainal Alimuddin Zainal in OpenAIRE

    Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    187
    citations187
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J. De Ruyck; V.K. Verma; orcid Svend Bram;
    Svend Bram
    ORCID
    Harvested from ORCID Public Data File

    Svend Bram in OpenAIRE
    Svend Bram; +1 Authors

    Abstract Emissions and efficiency of a pellet boiler (40 kW) at nominal load were compared with emissions and efficiency at reduced load, while fired with six biomass pellets. The pellets include reed canary grass ( Phalaris arundinacea ), pectin waste from citrus shells ( Citrus reticulata ), sunflower husk ( Helianthus annuus ), peat, wheat straw ( Triticum aestivum ) and wood pellets. The measurements of emissions comprised of carbon monoxide (CO), nitrogen oxides (NO x ), sulphur oxides (SO x ) and flue dust mass concentrations (using DIN plus and isokinetic sampling techniques). Emissions varied as a function of operational loads, for each type of pellets. The CO emissions were insignificant with reed canary grass (RCG), citrus pectin waste (CPW) and straw pellets at nominal load, however, at reduced load same pellets emitted 1.9, 4.0 and 7.4 times higher CO than wood pellets, respectively. Peat pellets emitted maximum CO at nominal load (4221.1 mgNm −3 , 12.6 times higher than wood pellets) however; at reduced load CO emission was insignificant. The highest NO x emissions were reported with CPW, which were 3.4 and 4.6 times higher than wood pellets at nominal load and reduced load, respectively. Dust emissions were highest with sunflower husk and lowest with RCG pellets, at both operational modes. The best performance was reported with wood pellets, followed by RCG and pectin pellets, however, wood pellets combustion emitted 1.7 and 2.0 times higher dust DIN plus than RCG at nominal and reduced loads, respectively. Not only fuel specific combustion optimization but also operational load specific optimization is essential for efficient use of agro-pellets in this type of boilers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    78
    citations78
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Surya Pratap Singh;
    Surya Pratap Singh
    ORCID
    Harvested from ORCID Public Data File

    Surya Pratap Singh in OpenAIRE
    Meena Kumari Sharma; orcid Shatrudhan Pandey;
    Shatrudhan Pandey
    ORCID
    Harvested from ORCID Public Data File

    Shatrudhan Pandey in OpenAIRE
    orcid bw S. M. Mozammil Hasnain;
    S. M. Mozammil Hasnain
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    S. M. Mozammil Hasnain in OpenAIRE
    +2 Authors

    The growing population and increasing urbanization have led to a surge in domestic wastewater generation, posing significant challenges for effective and sustainable treatment. The present study demonstrates a novel and sustainable approach for the onsite treatment of domestic wastewater using an integrated settler-based biofilm reactor (ISBR) with efficient biogas generation. The ISBR provides an optimized environment for the growth of biofilm, facilitating the removal of organic pollutants and pathogens. Moreover, the ISBR enables the recovery of a valuable resource in the form of biogas, thus enhancing the overall utility of the treatment process. The performance of the ISBR was comprehensively evaluated at laboratory scale through treating the actual domestic wastewater generated from the hostel of Manipal University Jaipur. The ISBR system was operated under an ambient environment at a hydraulic retention time (HRT) of 24 h. The results demonstrated remarkable efficiency in terms of chemical oxygen demand (COD), total suspended solids (TSS), and coliforms removal, with average removal efficiency being more than 90%. According to the COD mass balance analysis, 48.2% of the influent COD was recovered as bioenergy. The chromatogram revealed a high percentage of methane gas in the collected biogas sample. The field emission scanning electron microscope (FESEM) analysis of the accumulated sludge in the ISBR system depicted the morphology of methanogenic bacteria. Both the experimental and theoretical results confirmed the feasibility and sustainability of the ISBR system at the onsite level.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Saydaliev, Hayot Berk;
    Saydaliev, Hayot Berk
    ORCID
    Harvested from ORCID Public Data File

    Saydaliev, Hayot Berk in OpenAIRE
    orcid Lan, Jing;
    Lan, Jing
    ORCID
    Harvested from ORCID Public Data File

    Lan, Jing in OpenAIRE
    Anser, Muhammad Khalid; orcid Ali, Sajid;
    Ali, Sajid
    ORCID
    Harvested from ORCID Public Data File

    Ali, Sajid in OpenAIRE
    +1 Authors

    Renewable energy has become more popular since it is cost-effective and more efficient than conventional energy sources. Biomass-based renewable energy is primarily used in emerging economies to ensure environmental sustainability. This study examines the asymmetric correlation between biomass energy consumption and CO2 emissions in the top-10 biomass energy consumer countries (Brazil, Canada, Thailand, China, Italy, India, Germany, USA, UK, and Japan). A new approach "Quantile-onQuantile (QQ)" is employed by utilizing the data from 1991 to 2018. Biomass energy consumption, with the exception of Thailand, significantly mitigates CO2 emissions at various quantiles in selected countries. As a robustness check, we used the quantile regression test, whose findings are consistent with the outcomes from the quantile-on-quantile method. However, the degree of asymmetry in the biomass energy-CO2 nexus varies by country, necessitating extra attention and government vigilance when developing biomass energy and environmental policies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Haider Niaz;
    Haider Niaz
    ORCID
    Harvested from ORCID Public Data File

    Haider Niaz in OpenAIRE
    Moonyong Lee; orcid Rofice Dickson;
    Rofice Dickson
    ORCID
    Harvested from ORCID Public Data File

    Rofice Dickson in OpenAIRE
    Rofice Dickson; +4 Authors

    Abstract Hydrogen is considered a potential game changer for world energy systems and a solution to climate change concerns, as it generates zero waste and it is suited for power generation and transportation. Despite its several advantages, there are significant technical challenges in deploying a stable hydrogen economy including improving its process efficiencies, lowering production costs, maintaining cost-effective transmission and distribution, and exploiting inexpensive and sustainable feedstocks. In this context, a detailed study was conducted to analyze the production sources, technologies, storage and transport systems, and global potential exportable feedstocks to produce hydrogen. A comprehensive analysis of current hydrogen production technologies with their energy efficiencies and hydrogen selling prices was reported in this study. Various hydrogen production technologies with their capital investments and CO2 emissions were also presented. Potential feedstocks for hydrogen production were identified and analyzed through a product space model, which characterizes a network of global exportable products based on their similarities and productive knowledge. It was established that the hydrogen production feedstocks and sources currently used are primarily available in six countries: the United States of America, France, Russia, Sweden, the Netherlands, and Spain. Broadly, the results revealed that the United States of America and Russia shared the highest hydrogen feedstock exports, indicating a higher probability of hydrogen production in these countries. Except for Russia, all the studied countries fell in the most desired quadrant, indicating that they can move in all product space directions to exploit unexplored hydrogen feedstocks for better sustainable economic growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: Zubairu Abubakar; orcid S. Y. Sanusi;
    S. Y. Sanusi
    ORCID
    Harvested from ORCID Public Data File

    S. Y. Sanusi in OpenAIRE
    orcid Esmail M. A. Mokheimer;
    Esmail M. A. Mokheimer
    ORCID
    Harvested from ORCID Public Data File

    Esmail M. A. Mokheimer in OpenAIRE

    Carbon dioxide (CO2) emission forms the biggest portion of greenhouse gas emissions known to cause global warming, which can lead to climate change. One of the most widely recommended means of tack...

    addClaim
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim
  • Authors: M. A. Elhadidy;

    Global, spectral isolation data measured every minute over a four-year period at Dhahran (26° 32′ N, 50° 13′ E) Saudi Arabia, using five Schott filters with cutoff at “285, 500, 530, 630, and 695” nm, and ultraviolet radiation sensor, 295–385nm, are analyzed. Monthly averages of the diurnal variations of these bands are presented. The rainfall, dust/sand storm, cloud and air mass effects on the band radiation are also investigated. Comparisons of the yearly average of band radiation measured at Dhahran and those reported in Goldberg and Klein (1977) for Jerusalem (32° N) and Rockville (39° N) are presented. Monthly average band radiation are also presented. The data showed that the ratio of the monthly average of the diurnal band radiations to the total radiation for winter and summer are nearly the same. The data also showed that the rainfall increases the percentage of radiation in the bands 385–500nm, 500–530nm, and 630–690nm, and it decreases the percentage radiation of the band 690–2800nm and that the opposite is true for dust/sand storm effect. The change in the band radiation due to cloud cover is small. The data also showed that the monthly and yearly averages of the radiation in the bands “630–695, and 695–2800” nm are latitude independent. The monthly radiation values at each band over the year are almost constant.

    addClaim
    3
    citations3
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Skrydstrup, Julie;
    Skrydstrup, Julie
    ORCID
    Harvested from ORCID Public Data File

    Skrydstrup, Julie in OpenAIRE
    orcid Löwe, Roland;
    Löwe, Roland
    ORCID
    Harvested from ORCID Public Data File

    Löwe, Roland in OpenAIRE
    Gregersen, Ida Bülow; orcid Koetse, Mark;
    Koetse, Mark
    ORCID
    Harvested from ORCID Public Data File

    Koetse, Mark in OpenAIRE
    +3 Authors

    Nature-based solutions may actively reduce hydro-meteorological risks in urban areas as a part of climate change adaptation. However, the main reason for the increasing uptake of this type of solution is their many benefits for the local inhabitants, including recreational value. Previous studies on recreational value focus on studies of existing nature sites that are often much larger than what is considered as new NBS for flood adaptation studies in urban areas. We thus prioritized studies with smaller areas and nature types suitable for urban flood adaptation and divided them into four common nature types for urban flood adaptation: sustainable urban drainage systems, city parks, nature areas and rivers. We identified 23 primary valuation studies, including both stated and revealed preference studies, and derived two value transfer functions based on meta-regression analysis on existing areas. We investigated trends between values and variables and found that for the purpose of planning of new NBS the size of NBS and population density were determining factors of recreational value. For existing NBS the maximum travelling distance may be included as well. We find that existing state-of-the-art studies overestimate the recreational with more than a factor of 4 for NBS sizes below 5 ha. Our results are valid in a European context for nature-based solutions below 250 ha and can be applied across different NBS types and sizes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://dx.doi.org/10.1016/j.je...
    Article
    License: Elsevier TDM
    Data sources: Sygma
    addClaim
    Access Routes
    Green
    hybrid
    24
    citations24
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      http://dx.doi.org/10.1016/j.je...
      Article
      License: Elsevier TDM
      Data sources: Sygma
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Henrike Rau;
    Henrike Rau
    ORCID
    Harvested from ORCID Public Data File

    Henrike Rau in OpenAIRE
    Grégoire Wallenborn; Grégoire Wallenborn; orcid Marlyne Sahakian;
    Marlyne Sahakian
    ORCID
    Harvested from ORCID Public Data File

    Marlyne Sahakian in OpenAIRE

    This article demonstrates how a cultural reading of consumption that focuses on the meaning and materiality of domestic indoor microclimates can contribute to conceptual developments in the field of practice theory that refocus attention on cultural patterns, including prevailing norms and prescriptions regarding indoor temperature and thermal comfort. Drawing on evidence collected during a research-led change initiative that encouraged people to reduce energy use in the home by lowering indoor temperature to 18°C, we deploy the heuristic device of “indoor microclimate as artifact” to show how the manifestation of this new artifact initiated significant changes in everyday practices that revolve around heating. We observe that these changes may also spill over into the public sphere – from home to workplace. By making the microclimate a tangible and visible thing, we describe how people appropriate and appreciate this new object of consumption, what it says about different bodies in diverse and bounded spaces, and what the artifact as a commodity reveals about broader systems of heating and energy provision, and associated actors. Due to the increasing spread of central heating and the growing importance of complex technological devices to monitor and control indoor temperature, heating is no longer a practice in and of itself for many urban dwellers in Europe. However, when people appropriate the indoor microclimate, new heating-related practices emerge that can lead to energy sufficiency. We thus argue that by deliberately “materializing” domestic indoor microclimate as part of a change initiative, more sustainable forms of energy use can be made to matter.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cultural Sociologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cultural Sociology
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    Access Routes
    Green
    bronze
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cultural Sociologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cultural Sociology
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph