- home
- Search
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- 2. Zero hunger
- IT
- NL
- BE
- UA
- English
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- 2. Zero hunger
- IT
- NL
- BE
- UA
- English
Research data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:DANS Data Station Social Sciences and Humanities Authors: Gao, X.; De Hoge, I.E.; Fischer, A.R.H.;Fashion products made from repurposed materials (e.g., backpacks made from pineapple leaves) have become more prevalent nowadays, and their environmental sustainability is one of the core advantages. Yet, it is currently unclear how consumers respond to products made from repurposed materials. We conducted three experiments to examine the effects of three material features, namely function, sustainability, and distinguishability, on consumer preferences for fashion products made from repurposed materials. The results indicate that, when the function of repurposed materials is as good as that of conventional materials, consumers prefer a product made from repurposed materials over the same product made from conventional materials. Also, consumers in general prefer repurposed materials to be less visually distinguishable. Finally, when the sustainability of the repurposed products is emphasized, consumers appear more likely to choose products made from repurposed materials, even when these products have an inferior function. In conclusion, to promote fashion products made from repurposed materials, marketers may emphasize the function and sustainability of repurposed materials, and producers may manufacture repurposed materials that visually resemble conventional materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Lovato, Tomas; Peano, Daniele;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 28 Dec 2018 NetherlandsPublisher:Dryad Jansen, Merel; Anten, Niels P.R.; Bongers, Frans; Martínez-Ramos, Miguel; Zuidema, Pieter A.; Anten, Niels P. R.;doi: 10.5061/dryad.q755t
1. Natural populations deliver a wide range of products that provide income for millions of people and need to be exploited sustainably. Large heterogeneity in individual performance within these exploited populations has the potential to improve population recovery after exploitation and thus help sustaining yields over time. 2. We explored the potential of using individual heterogeneity to design smarter harvest schemes, by sparing individuals that contribute most to future productivity and population growth, using the understorey palm Chamaedorea elegans as a model system. Leaves of this palm are an important non-timber forest product and long-term inter-individual growth variability can be evaluated from internode lengths. 3. We studied a population of 830 individuals, half of which was subjected to a 67 % defoliation treatment for three years. We measured effects of defoliation on vital rates and leaf size – a trait that determines marketability. We constructed integral projection models in which vital rates depended on stem length, past growth rate, and defoliation, and evaluated transient population dynamics to quantify population development and leaf yield. We then simulated scenarios in which we spared individuals that were either most important for population growth or had leaves smaller than marketable size. 4. Individuals varying in size or past growth rate responded similarly to leaf harvesting in terms of growth and reproduction. By contrast, defoliation-induced reduction in survival chance was smaller in large individuals than in small ones. Simulations showed that harvest-induced population decline was much reduced when individuals from size and past growth classes that contributed most to population growth were spared. Under this scenario cumulative leaf harvest over 20 years was somewhat reduced, but long-term leaf production was sustained. A three-fold increase in leaf yield was generated when individuals with small leaves are spared. 5. Synthesis and applications This study demonstrates the potential to create smarter systems of palm leaf harvest by accounting for individual heterogeneity within exploited populations. Sparing individuals that contribute most to population growth ensured sustained leaf production over time. The concepts and methods presented here are generally applicable to exploited plant and animal species which exhibit considerable individual heterogeneity. Vital rate and internode dataThis data file contains annual vital rate data (stem length growth, fruit production, survival and leaf production) of 830 individuals of the understorey palm Chamaedorea elegans, collected in a 0.7 ha plot in Chiapas, Mexico, during the period November 2012 - November 2015. A 2/3 defoliation treatment was repeatedly applied to half of the individuals. The data file also contains measurements of the lengths of all internodes of all individuals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q755t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q755t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone; Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone;In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation. The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 07 Aug 2017 NetherlandsPublisher:DANS Data Station Life Sciences van der Sande, M.T.; Arets, E.J.M.M.; Pena Claros, M.; Hoosbeek, M.R.; Caceres-Siani, Yasmani; van der Hout, P.; Poorter, L.;In this study, we test the effects of abiotic factors (light variation, caused by logging disturbance, and soil fertility) and biotic factors (species richness and functional trait composition) on biomass stocks (aboveground biomass, fine root biomass), SOM and productivity in a relatively monodominant Guyanese tropical rainforest. This forest grows on nutrient-poor soils and has few species that contribute most to total abundance. We therefore expected strong effects of soil fertility and species’ traits that determine resource acquisition and conservation, but not of diversity. We evaluated 6 years of data for 30 0.4-ha plots and tested hypotheses using structural equation models. Our results indicate that light availability (through disturbance) and soil fertility – especially P – strongly limit forest biomass productivity and stocks in this Guyanese forest. Low P availability may cause strong environmental filtering, which in turn results in a small set of dominant species. As a result, community trait composition but not species richness determines productivity and stocks of biomass and SOM in tropical forest on poor soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-xaw-ju8s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-xaw-ju8s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 19 Oct 2015Publisher:Dryad Authors: Ament, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; +2 AuthorsAment, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; Van der Weijden, Trudy; Kleijnen, Jos;doi: 10.5061/dryad.cr020
Objectives: To evaluate (1) the state of the art in sustainability research and (2) the outcomes of professionals’ adherence to guideline recommendations in medical practice. Design: Systematic review. Data sources: Searches were conducted until August 2015 in MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and the Guidelines International Network (GIN) library. A snowball strategy, in which reference sections of other reviews and of included papers were searched, was used to identify additional papers. Eligibility criteria: Studies needed to be focused on sustainability and on professionals’ adherence to clinical practice guidelines in medical care. Studies had to include at least 2 measurements: 1 before (PRE) or immediately after implementation (EARLY POST) and 1 measurement longer than 1 year after active implementation (LATE POST). Results: The search retrieved 4219 items, of which 14 studies met the inclusion criteria, involving 18 sustainability evaluations. The mean timeframe between the end of active implementation and the sustainability evaluation was 2.6 years (minimum 1.5–maximum 7.0). The studies were heterogeneous with respect to their methodology. Sustainability was considered to be successful if performance in terms of professionals’ adherence was fully maintained in the late postimplementation phase. Long-term sustainability of professionals’ adherence was reported in 7 out of 18 evaluations, adherence was not sustained in 6 evaluations, 4 evaluations showed mixed sustainability results and in 1 evaluation it was unclear whether the professional adherence was sustained. Conclusions: (2) Professionals’ adherence to a clinical practice guideline in medical care decreased after more than 1 year after implementation in about half of the cases. (1) Owing to the limited number of studies, the absence of a uniform definition, the high risk of bias, and the mixed results of studies, no firm conclusion about the sustainability of professionals’ adherence to guidelines in medical practice can be drawn. Results Systematic review sustainabilityFor this review, 4219 items were retrieved and screened based on title and abstract, 185 studies were assessed based on full text reading and 14 studies were selected for analyses. This data file contains the endnote file with all items and the classification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:DANS Data Station Social Sciences and Humanities Authors: Gao, X.; De Hoge, I.E.; Fischer, A.R.H.;Fashion products made from repurposed materials (e.g., backpacks made from pineapple leaves) have become more prevalent nowadays, and their environmental sustainability is one of the core advantages. Yet, it is currently unclear how consumers respond to products made from repurposed materials. We conducted three experiments to examine the effects of three material features, namely function, sustainability, and distinguishability, on consumer preferences for fashion products made from repurposed materials. The results indicate that, when the function of repurposed materials is as good as that of conventional materials, consumers prefer a product made from repurposed materials over the same product made from conventional materials. Also, consumers in general prefer repurposed materials to be less visually distinguishable. Finally, when the sustainability of the repurposed products is emphasized, consumers appear more likely to choose products made from repurposed materials, even when these products have an inferior function. In conclusion, to promote fashion products made from repurposed materials, marketers may emphasize the function and sustainability of repurposed materials, and producers may manufacture repurposed materials that visually resemble conventional materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Lovato, Tomas; Peano, Daniele;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 28 Dec 2018 NetherlandsPublisher:Dryad Jansen, Merel; Anten, Niels P.R.; Bongers, Frans; Martínez-Ramos, Miguel; Zuidema, Pieter A.; Anten, Niels P. R.;doi: 10.5061/dryad.q755t
1. Natural populations deliver a wide range of products that provide income for millions of people and need to be exploited sustainably. Large heterogeneity in individual performance within these exploited populations has the potential to improve population recovery after exploitation and thus help sustaining yields over time. 2. We explored the potential of using individual heterogeneity to design smarter harvest schemes, by sparing individuals that contribute most to future productivity and population growth, using the understorey palm Chamaedorea elegans as a model system. Leaves of this palm are an important non-timber forest product and long-term inter-individual growth variability can be evaluated from internode lengths. 3. We studied a population of 830 individuals, half of which was subjected to a 67 % defoliation treatment for three years. We measured effects of defoliation on vital rates and leaf size – a trait that determines marketability. We constructed integral projection models in which vital rates depended on stem length, past growth rate, and defoliation, and evaluated transient population dynamics to quantify population development and leaf yield. We then simulated scenarios in which we spared individuals that were either most important for population growth or had leaves smaller than marketable size. 4. Individuals varying in size or past growth rate responded similarly to leaf harvesting in terms of growth and reproduction. By contrast, defoliation-induced reduction in survival chance was smaller in large individuals than in small ones. Simulations showed that harvest-induced population decline was much reduced when individuals from size and past growth classes that contributed most to population growth were spared. Under this scenario cumulative leaf harvest over 20 years was somewhat reduced, but long-term leaf production was sustained. A three-fold increase in leaf yield was generated when individuals with small leaves are spared. 5. Synthesis and applications This study demonstrates the potential to create smarter systems of palm leaf harvest by accounting for individual heterogeneity within exploited populations. Sparing individuals that contribute most to population growth ensured sustained leaf production over time. The concepts and methods presented here are generally applicable to exploited plant and animal species which exhibit considerable individual heterogeneity. Vital rate and internode dataThis data file contains annual vital rate data (stem length growth, fruit production, survival and leaf production) of 830 individuals of the understorey palm Chamaedorea elegans, collected in a 0.7 ha plot in Chiapas, Mexico, during the period November 2012 - November 2015. A 2/3 defoliation treatment was repeatedly applied to half of the individuals. The data file also contains measurements of the lengths of all internodes of all individuals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q755t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q755t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone; Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone;In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation. The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 07 Aug 2017 NetherlandsPublisher:DANS Data Station Life Sciences van der Sande, M.T.; Arets, E.J.M.M.; Pena Claros, M.; Hoosbeek, M.R.; Caceres-Siani, Yasmani; van der Hout, P.; Poorter, L.;In this study, we test the effects of abiotic factors (light variation, caused by logging disturbance, and soil fertility) and biotic factors (species richness and functional trait composition) on biomass stocks (aboveground biomass, fine root biomass), SOM and productivity in a relatively monodominant Guyanese tropical rainforest. This forest grows on nutrient-poor soils and has few species that contribute most to total abundance. We therefore expected strong effects of soil fertility and species’ traits that determine resource acquisition and conservation, but not of diversity. We evaluated 6 years of data for 30 0.4-ha plots and tested hypotheses using structural equation models. Our results indicate that light availability (through disturbance) and soil fertility – especially P – strongly limit forest biomass productivity and stocks in this Guyanese forest. Low P availability may cause strong environmental filtering, which in turn results in a small set of dominant species. As a result, community trait composition but not species richness determines productivity and stocks of biomass and SOM in tropical forest on poor soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-xaw-ju8s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-xaw-ju8s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 19 Oct 2015Publisher:Dryad Authors: Ament, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; +2 AuthorsAment, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; Van der Weijden, Trudy; Kleijnen, Jos;doi: 10.5061/dryad.cr020
Objectives: To evaluate (1) the state of the art in sustainability research and (2) the outcomes of professionals’ adherence to guideline recommendations in medical practice. Design: Systematic review. Data sources: Searches were conducted until August 2015 in MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and the Guidelines International Network (GIN) library. A snowball strategy, in which reference sections of other reviews and of included papers were searched, was used to identify additional papers. Eligibility criteria: Studies needed to be focused on sustainability and on professionals’ adherence to clinical practice guidelines in medical care. Studies had to include at least 2 measurements: 1 before (PRE) or immediately after implementation (EARLY POST) and 1 measurement longer than 1 year after active implementation (LATE POST). Results: The search retrieved 4219 items, of which 14 studies met the inclusion criteria, involving 18 sustainability evaluations. The mean timeframe between the end of active implementation and the sustainability evaluation was 2.6 years (minimum 1.5–maximum 7.0). The studies were heterogeneous with respect to their methodology. Sustainability was considered to be successful if performance in terms of professionals’ adherence was fully maintained in the late postimplementation phase. Long-term sustainability of professionals’ adherence was reported in 7 out of 18 evaluations, adherence was not sustained in 6 evaluations, 4 evaluations showed mixed sustainability results and in 1 evaluation it was unclear whether the professional adherence was sustained. Conclusions: (2) Professionals’ adherence to a clinical practice guideline in medical care decreased after more than 1 year after implementation in about half of the cases. (1) Owing to the limited number of studies, the absence of a uniform definition, the high risk of bias, and the mixed results of studies, no firm conclusion about the sustainability of professionals’ adherence to guidelines in medical practice can be drawn. Results Systematic review sustainabilityFor this review, 4219 items were retrieved and screened based on title and abstract, 185 studies were assessed based on full text reading and 14 studies were selected for analyses. This data file contains the endnote file with all items and the classification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu