- home
- Search
- Energy Research
- US
- GB
- BD
- Southeast University
- Energy Research
- US
- GB
- BD
- Southeast University
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Nan Zhao; Beibei Wang; Fangxing Li; Qingxin Shi;Interest in the highly efficient energy hub (EH) model has been growing despite the high computational requirements of planning for a multi-energy, multi-device operation. To address both the device size limitation and the multi-scenario issue, we propose a new solution methodology for solving the EH planning problem. In the method, the decision variables are device sizes. First, a dimension reduction technique is proposed to address the curse of dimensionality based on the correlation of unknown variables such as the capacities of different devices in an EH. Second, to avoid local convergence, a solution method called the variable-sized unimodal searching (VUS) approach is proposed to assure a global optimal planning scheme for the one-dimensional non-convex optimization model obtained from the preceding dimension reduction process. The case study indicates that the proposed approach has a higher computing efficiency than the Benders decomposition (BD) algorithm to deal with a scenario-based stochastic planning problem with a large number of scenarios. Thus, the effectiveness of the EH planning approach is verified.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3034938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3034938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Haiya Qian; Qingshan Xu; Yuanxing Xia; Pengwei Du; Jun Zhao;Control methods based on global positioning systems (GPS) are reported in multiple literatures recently, which achieve a fixed frequency operation of the microgrid and therefore has the tremendous benefit that any problems related to frequency instability are eliminated. However, the possible interruption of GPS timing signals may cause current circulating and finally leads to instability of the microgrid, yet it is largely neglected in literatures. This paper presents an angle synchronizing mechanism which utilizes the timing signal from GPS satellites and an auxiliary frequency droop loop to ensure synchronization during GPS offline events. Smooth transfer is guaranteed between primary and auxiliary control loops with discrete control architecture. Also, to allow microgrid using GPS-based control to work in tandem with the bulk power system or another frequency droop microgrid, an extra synchronization algorithm is proposed. The viability and performance of the proposed control structure is validated by case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Xiaojing Qi; Jianyong Zheng; Fei Mei;More and more renewable energy sources are integrated into power grids, leading to a power electronic-based low-inertia power system. The grid-forming (GFM) inverter is an effective method for improving the inertia of the system. However, with the increased GFM inverters in the system, how the multiple control parameters affect the frequency response is still not clear. In this study, first, the power-phase model of the power grid is established; then, a small-signal distributed frequency model of the GFM inverter-based power system is established associating with the power-phase model of the power grid and the power-frequency model of the GFM inverter. Based on the proposed model, the influence of the multiple parameters to the frequency response is analyzed. It is concluded that both the inertia and damping coefficient affect the settling time, overshoot, and oscillation of the frequency. Finally, the simulation results verify the proposed model and the conclusion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.921222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.921222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hong Ren; Nan Liu; Cunhua Pan; Lajos Hanzo;We jointly select the fronthaul links and optimize the transmit precoding matrices for maximizing the energy efficiency (EE) of a multiuser multiple-input multiple-output-aided distributed antenna system. The fronthaul link’s power consumption is taken into consideration, which is assumed to be proportional to the number of active fronthaul links quantified by using indicator functions. Both the rate requirements and the power constraints of the remote access units are considered. Under realistic power constraints, some of the users cannot be admitted. Hence, we formulate a two-stage optimization problem. In Stage I, a novel user selection method is proposed for determining the maximum number of admitted users. In Stage II, we deal with the EE optimization problem. First, the indicator function is approximated by a smooth concave logarithmic function. Second, a triple-layer iterative algorithm is proposed for solving the approximated EE optimization problem, which is proved to converge to the Karush–Kuhn–Tucker conditions of the smoothened EE optimization problem. To further reduce the complexity, a single-layer iterative algorithm is conceived, which guarantees convergence. Our simulation results show that the proposed user selection algorithm approaches the performance of the exhaustive search method. Finally, the proposed algorithms are capable of achieving an order of magnitude higher EE than its conventional counterpart operating without considering link selection.
IEEE Transactions on... arrow_drop_down IEEE Transactions on CommunicationsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcomm.2017.2728526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 34 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on CommunicationsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcomm.2017.2728526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Yujian Ye; Yi Tang; Dawei Qiu; Goran Strbac; Huiyu Wang;doi: 10.3390/en14030531
With the roll-out of smart meters and the increasing prevalence of distributed energy resources (DERs) at the residential level, end-users rely on home energy management systems (HEMSs) that can harness real-time data and employ artificial intelligence techniques to optimally manage the operation of different DERs, which are targeted toward minimizing the end-user’s energy bill. In this respect, the performance of the conventional model-based demand response (DR) management approach may deteriorate due to the inaccuracy of the employed DER operating models and the probabilistic modeling of uncertain parameters. To overcome the above drawbacks, this paper develops a novel real-time DR management strategy for a residential household based on the twin delayed deep deterministic policy gradient (TD3) learning approach. This approach is model-free, and thus does not rely on knowledge of the distribution of uncertainties or the operating models and parameters of the DERs. It also enables learning of neural-network-based and fine-grained DR management policies in a multi-dimensional action space by exploiting high-dimensional sensory data that encapsulate the uncertainties associated with the renewable generation, appliances’ operating states, utility prices, and outdoor temperature. The proposed method is applied to the energy management problem for a household with a portfolio of the most prominent types of DERs. Case studies involving a real-world scenario are used to validate the superior performance of the proposed method in reducing the household’s energy costs while coping with the multi-source uncertainties through comprehensive comparisons with the state-of-the-art deep reinforcement learning (DRL) methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14030531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14030531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Xudong Wu; Yu-Xiang Ma; Cui-Fen Wang; Wei Cao; Hong-Wei Yi; Jian Lu; Xiao-Ning Wang;pmid: 25908621
Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.
Chinese Journal of N... arrow_drop_down Chinese Journal of Natural MedicinesArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1875-5364(15)30011-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chinese Journal of N... arrow_drop_down Chinese Journal of Natural MedicinesArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1875-5364(15)30011-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Peiling Chen; Yujian Ye; Hongru Wang; Siqi Bu; Yi Tang; Goran Strbac;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Springer Science and Business Media LLC Authors: Xingzheng Chen; Congbo Li; Yan Jin; Li Li;In a milling process, proper selection of cutting parameters can significantly reduce the electrical energy consumption. Many researchers have conducted cutting parameter optimization of the milling process for electrical energy saving during the past several years. However, in the milling process, a large amount of auxiliary materials such as cutting tools and cutting fluids are consumed. The production process of these materials is energy-intensive and a lot of energy are consumed. Optimizing cutting parameters considering both the electrical energy consumption and embodied energy consumption of auxiliary materials can further reduce the environmental impact of the milling process. In this paper, an approach of cutting parameter optimization is proposed to maximize energy efficiency and machining efficiency for milling operation. Firstly, an energy consumption model of milling operation considering both the electrical energy consumption and embodied energy consumption of cutting tools and cutting fluids is proposed. Then a multi-objective optimization model is established to achieve maximizing energy efficiency and machining efficiency. Finally, to verify the proposed multi-objective model, case studies are carried out and the results indicate that (i) the optimum cutting parameters of milling process vary with the energy boundaries whether considering the embodied energy of the auxiliary materials or not; (ii) the optimum cutting parameter schemes for maximum machining efficiency do not ensure maximum energy efficiency; (iii) multi-objective optimization is an effective method to address the conflicts of the two objectives.
The International Jo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Advanced Manufacturing TechnologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Advanced Manufacturing TechnologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00170-018-1647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The International Jo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Advanced Manufacturing TechnologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Advanced Manufacturing TechnologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00170-018-1647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Boya Century Publishing Authors: Zhang Feng; Minyue Ge; Qian Meng;Artificial Intelligence (AI) is poised to revolutionize the architectural design and energy management of green buildings, offering significant advancements in sustainability and efficiency. This paper explores the transformative impact of AI on improving energy efficiency and reducing carbon emissions in commercial buildings. By leveraging AI algorithms, architects can optimize building performance through advanced environmental analysis, automation of repetitive tasks, and real-time data-driven decision-making. AI facilitates precise energy consumption forecasting and integration of renewable energy sources, enhancing the overall sustainability of buildings. Our study demonstrates that AI can reduce energy consumption and CO2 emissions by approximately 8% and 19%, respectively, in typical mid-size office buildings by 2050 compared to conventional methods. Further, the combination of AI with energy efficiency policies and low-emission energy production is projected to yield reductions of up to 40% in energy consumption and 90% in CO2 emissions. This paper provides a systematic approach for quantifying AI's benefits across various building types and climate zones, offering valuable insights for decision-makers in the construction industry.
Frontiers in Science... arrow_drop_down Frontiers in Science and EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54691/py2h2y60&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Science... arrow_drop_down Frontiers in Science and EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54691/py2h2y60&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Bingbing Li; Weichao Zhuang; Hao Zhang; Hao Sun; Haoji Liu; Jianrun Zhang; Guodong Yin; Boli Chen;The advent of intelligent connected technology has greatly enriched the capabilities of vehicles in acquiring information. The integration of short-term information from limited sensing range and long-term information from cloud-based systems in vehicle motion planning and control has become a vital means to deeply explore the energy-saving potential of vehicles. In this study, a traffic-aware ecological cruising control (T-ECC) strategy based on a hierarchical framework for connected electric vehicles in uncertain traffic environments is proposed, leveraging the two distinct temporal-dimension information. In the upper layer that is dedicated for speed planning, a sustainable energy consumption strategy (SECS) is introduced for the first time. It finds the optimal economic speed by converting variations in kinetic energy into equivalent battery energy consumption based on long-term road information. In the lower layer, a synthetic rolling-horizon optimization control (SROC) is developed to handle real-time traffic uncertainties. This control approach jointly optimizes energy efficiency, battery life, driving safety, and comfort for vehicles under dynamically changing traffic conditions. Notably, a stochastic preceding vehicle model is presented to effectively capture the uncertainties in traffic during the driving process. Finally, the proposed T-ECC is validated through simulations in both virtual and real-world driving conditions. Results demonstrate that the proposed strategy significantly improves the energy efficiency of the vehicle.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tte.20...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tte.2023.3325403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tte.20...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tte.2023.3325403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Nan Zhao; Beibei Wang; Fangxing Li; Qingxin Shi;Interest in the highly efficient energy hub (EH) model has been growing despite the high computational requirements of planning for a multi-energy, multi-device operation. To address both the device size limitation and the multi-scenario issue, we propose a new solution methodology for solving the EH planning problem. In the method, the decision variables are device sizes. First, a dimension reduction technique is proposed to address the curse of dimensionality based on the correlation of unknown variables such as the capacities of different devices in an EH. Second, to avoid local convergence, a solution method called the variable-sized unimodal searching (VUS) approach is proposed to assure a global optimal planning scheme for the one-dimensional non-convex optimization model obtained from the preceding dimension reduction process. The case study indicates that the proposed approach has a higher computing efficiency than the Benders decomposition (BD) algorithm to deal with a scenario-based stochastic planning problem with a large number of scenarios. Thus, the effectiveness of the EH planning approach is verified.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3034938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3034938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Haiya Qian; Qingshan Xu; Yuanxing Xia; Pengwei Du; Jun Zhao;Control methods based on global positioning systems (GPS) are reported in multiple literatures recently, which achieve a fixed frequency operation of the microgrid and therefore has the tremendous benefit that any problems related to frequency instability are eliminated. However, the possible interruption of GPS timing signals may cause current circulating and finally leads to instability of the microgrid, yet it is largely neglected in literatures. This paper presents an angle synchronizing mechanism which utilizes the timing signal from GPS satellites and an auxiliary frequency droop loop to ensure synchronization during GPS offline events. Smooth transfer is guaranteed between primary and auxiliary control loops with discrete control architecture. Also, to allow microgrid using GPS-based control to work in tandem with the bulk power system or another frequency droop microgrid, an extra synchronization algorithm is proposed. The viability and performance of the proposed control structure is validated by case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Xiaojing Qi; Jianyong Zheng; Fei Mei;More and more renewable energy sources are integrated into power grids, leading to a power electronic-based low-inertia power system. The grid-forming (GFM) inverter is an effective method for improving the inertia of the system. However, with the increased GFM inverters in the system, how the multiple control parameters affect the frequency response is still not clear. In this study, first, the power-phase model of the power grid is established; then, a small-signal distributed frequency model of the GFM inverter-based power system is established associating with the power-phase model of the power grid and the power-frequency model of the GFM inverter. Based on the proposed model, the influence of the multiple parameters to the frequency response is analyzed. It is concluded that both the inertia and damping coefficient affect the settling time, overshoot, and oscillation of the frequency. Finally, the simulation results verify the proposed model and the conclusion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.921222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.921222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hong Ren; Nan Liu; Cunhua Pan; Lajos Hanzo;We jointly select the fronthaul links and optimize the transmit precoding matrices for maximizing the energy efficiency (EE) of a multiuser multiple-input multiple-output-aided distributed antenna system. The fronthaul link’s power consumption is taken into consideration, which is assumed to be proportional to the number of active fronthaul links quantified by using indicator functions. Both the rate requirements and the power constraints of the remote access units are considered. Under realistic power constraints, some of the users cannot be admitted. Hence, we formulate a two-stage optimization problem. In Stage I, a novel user selection method is proposed for determining the maximum number of admitted users. In Stage II, we deal with the EE optimization problem. First, the indicator function is approximated by a smooth concave logarithmic function. Second, a triple-layer iterative algorithm is proposed for solving the approximated EE optimization problem, which is proved to converge to the Karush–Kuhn–Tucker conditions of the smoothened EE optimization problem. To further reduce the complexity, a single-layer iterative algorithm is conceived, which guarantees convergence. Our simulation results show that the proposed user selection algorithm approaches the performance of the exhaustive search method. Finally, the proposed algorithms are capable of achieving an order of magnitude higher EE than its conventional counterpart operating without considering link selection.
IEEE Transactions on... arrow_drop_down IEEE Transactions on CommunicationsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcomm.2017.2728526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 34 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on CommunicationsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcomm.2017.2728526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Yujian Ye; Yi Tang; Dawei Qiu; Goran Strbac; Huiyu Wang;doi: 10.3390/en14030531
With the roll-out of smart meters and the increasing prevalence of distributed energy resources (DERs) at the residential level, end-users rely on home energy management systems (HEMSs) that can harness real-time data and employ artificial intelligence techniques to optimally manage the operation of different DERs, which are targeted toward minimizing the end-user’s energy bill. In this respect, the performance of the conventional model-based demand response (DR) management approach may deteriorate due to the inaccuracy of the employed DER operating models and the probabilistic modeling of uncertain parameters. To overcome the above drawbacks, this paper develops a novel real-time DR management strategy for a residential household based on the twin delayed deep deterministic policy gradient (TD3) learning approach. This approach is model-free, and thus does not rely on knowledge of the distribution of uncertainties or the operating models and parameters of the DERs. It also enables learning of neural-network-based and fine-grained DR management policies in a multi-dimensional action space by exploiting high-dimensional sensory data that encapsulate the uncertainties associated with the renewable generation, appliances’ operating states, utility prices, and outdoor temperature. The proposed method is applied to the energy management problem for a household with a portfolio of the most prominent types of DERs. Case studies involving a real-world scenario are used to validate the superior performance of the proposed method in reducing the household’s energy costs while coping with the multi-source uncertainties through comprehensive comparisons with the state-of-the-art deep reinforcement learning (DRL) methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14030531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14030531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Xudong Wu; Yu-Xiang Ma; Cui-Fen Wang; Wei Cao; Hong-Wei Yi; Jian Lu; Xiao-Ning Wang;pmid: 25908621
Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.
Chinese Journal of N... arrow_drop_down Chinese Journal of Natural MedicinesArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1875-5364(15)30011-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chinese Journal of N... arrow_drop_down Chinese Journal of Natural MedicinesArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1875-5364(15)30011-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Peiling Chen; Yujian Ye; Hongru Wang; Siqi Bu; Yi Tang; Goran Strbac;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Springer Science and Business Media LLC Authors: Xingzheng Chen; Congbo Li; Yan Jin; Li Li;In a milling process, proper selection of cutting parameters can significantly reduce the electrical energy consumption. Many researchers have conducted cutting parameter optimization of the milling process for electrical energy saving during the past several years. However, in the milling process, a large amount of auxiliary materials such as cutting tools and cutting fluids are consumed. The production process of these materials is energy-intensive and a lot of energy are consumed. Optimizing cutting parameters considering both the electrical energy consumption and embodied energy consumption of auxiliary materials can further reduce the environmental impact of the milling process. In this paper, an approach of cutting parameter optimization is proposed to maximize energy efficiency and machining efficiency for milling operation. Firstly, an energy consumption model of milling operation considering both the electrical energy consumption and embodied energy consumption of cutting tools and cutting fluids is proposed. Then a multi-objective optimization model is established to achieve maximizing energy efficiency and machining efficiency. Finally, to verify the proposed multi-objective model, case studies are carried out and the results indicate that (i) the optimum cutting parameters of milling process vary with the energy boundaries whether considering the embodied energy of the auxiliary materials or not; (ii) the optimum cutting parameter schemes for maximum machining efficiency do not ensure maximum energy efficiency; (iii) multi-objective optimization is an effective method to address the conflicts of the two objectives.
The International Jo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Advanced Manufacturing TechnologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Advanced Manufacturing TechnologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00170-018-1647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The International Jo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Advanced Manufacturing TechnologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Advanced Manufacturing TechnologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00170-018-1647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Boya Century Publishing Authors: Zhang Feng; Minyue Ge; Qian Meng;Artificial Intelligence (AI) is poised to revolutionize the architectural design and energy management of green buildings, offering significant advancements in sustainability and efficiency. This paper explores the transformative impact of AI on improving energy efficiency and reducing carbon emissions in commercial buildings. By leveraging AI algorithms, architects can optimize building performance through advanced environmental analysis, automation of repetitive tasks, and real-time data-driven decision-making. AI facilitates precise energy consumption forecasting and integration of renewable energy sources, enhancing the overall sustainability of buildings. Our study demonstrates that AI can reduce energy consumption and CO2 emissions by approximately 8% and 19%, respectively, in typical mid-size office buildings by 2050 compared to conventional methods. Further, the combination of AI with energy efficiency policies and low-emission energy production is projected to yield reductions of up to 40% in energy consumption and 90% in CO2 emissions. This paper provides a systematic approach for quantifying AI's benefits across various building types and climate zones, offering valuable insights for decision-makers in the construction industry.
Frontiers in Science... arrow_drop_down Frontiers in Science and EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54691/py2h2y60&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Science... arrow_drop_down Frontiers in Science and EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54691/py2h2y60&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Bingbing Li; Weichao Zhuang; Hao Zhang; Hao Sun; Haoji Liu; Jianrun Zhang; Guodong Yin; Boli Chen;The advent of intelligent connected technology has greatly enriched the capabilities of vehicles in acquiring information. The integration of short-term information from limited sensing range and long-term information from cloud-based systems in vehicle motion planning and control has become a vital means to deeply explore the energy-saving potential of vehicles. In this study, a traffic-aware ecological cruising control (T-ECC) strategy based on a hierarchical framework for connected electric vehicles in uncertain traffic environments is proposed, leveraging the two distinct temporal-dimension information. In the upper layer that is dedicated for speed planning, a sustainable energy consumption strategy (SECS) is introduced for the first time. It finds the optimal economic speed by converting variations in kinetic energy into equivalent battery energy consumption based on long-term road information. In the lower layer, a synthetic rolling-horizon optimization control (SROC) is developed to handle real-time traffic uncertainties. This control approach jointly optimizes energy efficiency, battery life, driving safety, and comfort for vehicles under dynamically changing traffic conditions. Notably, a stochastic preceding vehicle model is presented to effectively capture the uncertainties in traffic during the driving process. Finally, the proposed T-ECC is validated through simulations in both virtual and real-world driving conditions. Results demonstrate that the proposed strategy significantly improves the energy efficiency of the vehicle.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tte.20...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tte.2023.3325403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tte.20...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tte.2023.3325403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu