- home
- Search
Filters
Clear All- Energy Research
- Embargo
- US
- University of Wyoming
- Energy Research
- Embargo
- US
- University of Wyoming
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Longzhen, Gao; Xiao, Feng; Yixuan, Zhang; Hongguang, Guo; Xiaogang, Mu; Zaixing, Huang; Michael, Urynowicz;pmid: 38849297
Abstract Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.
FEMS Microbiology Le... arrow_drop_down FEMS Microbiology LettersArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsle/fnae037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert FEMS Microbiology Le... arrow_drop_down FEMS Microbiology LettersArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsle/fnae037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 02 Jan 2024Publisher:Wiley David N. Stephens; Robert K. Szilagyi; Paige N. Roehling; Navamoney Arulsamy; Michael T. Mock;AbstractWe report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐tert‐butylphenoxyl (tBu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3 ligand up to 56 equiv of N2 per Ni center can be generated. Employing the N‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2 per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2 fragments. Ni‐mediated hydrazine disproportionation to N2 and NH3 completes the catalytic cycle.
ZENODO arrow_drop_down Angewandte Chemie International EditionArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202213462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 Powered bymore_vert ZENODO arrow_drop_down Angewandte Chemie International EditionArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202213462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Longzhen, Gao; Xiao, Feng; Yixuan, Zhang; Hongguang, Guo; Xiaogang, Mu; Zaixing, Huang; Michael, Urynowicz;pmid: 38849297
Abstract Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.
FEMS Microbiology Le... arrow_drop_down FEMS Microbiology LettersArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsle/fnae037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert FEMS Microbiology Le... arrow_drop_down FEMS Microbiology LettersArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsle/fnae037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 02 Jan 2024Publisher:Wiley David N. Stephens; Robert K. Szilagyi; Paige N. Roehling; Navamoney Arulsamy; Michael T. Mock;AbstractWe report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐tert‐butylphenoxyl (tBu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3 ligand up to 56 equiv of N2 per Ni center can be generated. Employing the N‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2 per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2 fragments. Ni‐mediated hydrazine disproportionation to N2 and NH3 completes the catalytic cycle.
ZENODO arrow_drop_down Angewandte Chemie International EditionArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202213462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 Powered bymore_vert ZENODO arrow_drop_down Angewandte Chemie International EditionArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202213462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu