- home
- Search
- Energy Research
- 13. Climate action
- US
- CA
- Energy Research
- 13. Climate action
- US
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Kelly Klima; Meghan Doherty; Jessica J. Hellmann; Jessica J. Hellmann;AbstractClimate change poses new and unique challenges that threaten lives and livelihoods. Given the increasing risks and looming uncertainty of climate change, increasing attention has been directed towards adaptation, or the strategies that enable humanity to persist and thrive through climate change the best it can. Though climate change is a global problem often discussed at the national scale, urban areas are increasingly seen as having a distinct role, and distinctive motivation and capacity, for adaptation. The 12 articles in this special issue explore ways of understanding and addressing climate change impacts on urban areas. Together they reveal young but rapidly growing scholarship on how to measure, and then overcome, challenges of climate change. Two key themes emerge in this issue: 1) that we must identify and then overcome current barriers to urban adaptation and 2) frameworks/metrics are necessary to identify and track adaptation progress in urban settings. Both of these themes point to the power of indicators and other quantitative information to inform priorities and illuminate the pathway forward for adaptation. As climate change is an entirely new challenge, careful measurement that enables investment by private and public parties is necessary to provide efficient outcomes that benefit the greatest number of people.
Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Science & PolicyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Science & PolicyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United KingdomPublisher:Public Library of Science (PLoS) Funded by:WT, UKRI | The Autonomic Power Syste...WT ,UKRI| The Autonomic Power SystemParker, Miles; Acland, Andrew; Armstrong, Harry J.; Bellingham, Jim R.; Bland, Jessica; Bodmer, Helen C.; Burall, Simon; Castell, Sarah; Chilvers, Jason; Cleevely, David D.; Cope, David; Costanzo, Lucia; Dolan, James A.; Doubleday, Robert; Feng, Wai Yi; Godfray, H. Charles J.; Good, David A.; Grant, Jonathan; Green, Nick; Groen, Arnoud J.; Guilliams, Tim T.; Gupta, Sunjai; Hall, Amanda C.; Heathfield, Adam; Hotopp, Ulrike; Kass, Gary; Leeder, Tim; Lickorish, Fiona A.; Lueshi, Leila M.; Magee, Chris; Mata, Tiago; McBride, Tony; McCarthy, Natasha; Mercer, Alan; Neilson, Ross; Ouchikh, Jackie; Oughton, Edward J.; Oxenham, David; Pallett, Helen; Palmer, James; Patmore, Jeff; Petts, Judith; Pinkerton, Jan; Ploszek, Richard; Pratt, Alan; Rocks, Sophie A.; Stansfield, Neil; Surkovic, Elizabeth; Tyler, Christopher P.; Watkinson, Andrew R.; Wentworth, Jonny; Willis, Rebecca; Wollner, Patrick K. A.; Worts, Kim; Sutherland, William J.;pmid: 24879444
pmc: PMC4039428
Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0096480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0096480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Zia Ud Din; Zia Ud Din; Zainal Alimuddin Zainal;Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Amit U. Raysoni; Esmeralda Mendez; August Luna; Joe Collins;doi: 10.3390/su14074288
Aggregate and limestone mining in San Antonio’s Bexar and Comal counties in Texas, USA, has caused considerable health concerns as of late. Aggregate mining actions can result in localized air quality issues in any neighborhood. Furthermore, heavy truck traffic, hauling, and transportation of the mined material contribute to pollution. In this research, PM species were sampled at four locations north of the San Antonio city limits. The data were collected using a TSI Air Quality Sampler that sampled PM1, PM2.5, PM4, PM10, wind speed, wind direction, temperature, and relative humidity. Continuous data with 1 min averages were recorded during the study period from August to September 2019. The instrument was stationed at every location for a period of 7 days each. The four locations were a ranch, an open field, a residential compound, and an elementary school. PM1 and PM2.5 concentration levels were lower compared to PM10 concentrations at all four studied sites. Our results suggest that PM concentrations are primarily impacted by mining activities. PM species were highest at the residential compound due to its proximity to an active mining area, resulting in deleterious health effects for neighbors living in the vicinity of the sampled site.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kristen S. Cetin; Youngme Seo; Jasmeet Singh; Jongho Im;Abstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2000Embargo end date: 01 Jan 2000Publisher:arXiv Funded by:SNSF | Profil 98/99 Nuclear aspe..., NSF | U.S.-Germany Cooperative ...SNSF| Profil 98/99 Nuclear aspects of stellar and explosive nucleosynthesis ,NSF| U.S.-Germany Cooperative Research: Massive Stars, Supernovae and NucleosynthesisAuthors: Heger, A.; Hoffman, R. D.; Rauscher, T.; Woosley, S. E.;We present the first calculations to follow the evolution of all stable isotopes (and their abundant radioactive progenitors) in a finely zoned stellar model computed from the onset of central hydrogen burning through explosion as a Type II supernova. The calculations were performed for a 15 solar mass Pop I star using the most recently available set of experimental and theoretical nuclear data, revised opacity tables, and taking into account mass loss due to stellar winds. We find the approximately solar production of proton-rich isotopes above a mass number of A=120 due to the gamma-process. We also find a weak s-process, which along with the gamma-process and explosive helium and carbon burning, produces nearly solar abundances of almost all nuclei from A=60 to 85. A few modifications of the abundances of heavy nuclei above mass 90 by the s-process are also noted and discussed. New weak rates lead to significant alteration of the properties of the presupernova core. 10 pages, 4 figures, Nuclear Astrophysics X Workshop proceedings
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2000License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.astro-ph/0006350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2000License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.astro-ph/0006350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Leslie Prufert-Bebout; Carley Corrado; Katie L. Hellier; Cécile E. Mioni; Jordan J. Allen; Erich E. Fleming; Brad M. Bebout; Angela M. Detweiler; Sue A. Carter;Abstract Large-scale cultivation of microalgal biomass in open systems can benefit from the low cost of using natural sunlight, as opposed to artificial light, but may encounter problems with photoinhibition, high evaporation rates, potential contamination and high energy demand. Wavelength selective luminescent solar concentrator (LSC) panels can solve some of these problems when incorporated into low-cost sheltered structures for algal biomass production that concurrently produce their own electricity by harnessing select portions of solar energy, not used for algal growth. The LSC panels in this study contained a fluorescent dye, Lumogen Red 305, which transmits blue and red wavelengths used for photosynthesis with high efficiency, while absorbing the green wavelengths and re-emitting them as red wavelengths. The fluorescently generated red wavelengths are either transmitted to boost algal growth, or waveguided and captured by photovoltaic cells to be converted into electricity. We found that different strains of microalgae (currently used commercially) grew equally well under the altered spectral conditions created by the luminescent panels, compared to growth under the full solar spectrum. Thus this technology presents a new approach wherein algae can be grown under protected, controlled conditions, while the cost of operations is offset by the structure's internal electrical production, without any loss to algal growth rate or achievable biomass density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Society of Petroleum Engineers (SPE) Authors: R.B. Chen; E.Y. Chen;doi: 10.2118/11509-pa
Summary Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations, and possible areas for improvement. These improved techniques are in use or will be implemented in the Aramco systems. Introduction Microbial corrosion has caused some failures in seawater injection systems. Whether or not microbial corrosion represents a major corrosion mechanism in the oilfield water system is a controversial question. However, it has certainly become a major concern in recent years. There are two approaches in dealing with microbial corrosion problems in a large oilfield water system. One approach is to start treating the system with bactericide in conjunction with regular scraping when the system is commissioned. The other is to treat the system only when an impending microbial-related problem is clearly defined. in either case, monitoring of microbial corrosion is essential. The first approach is more or less a precautionary measure. The treatment and selection of bactericides is usually based on past experience and laboratory evaluation tests. While the treatment is being implemented, a reliable monitoring program could assess the effectiveness of the current program of microbial corrosion control. In the second case, monitoring of microbial corrosion is even more important. it would provide timely information toward implementation of a treatment program before the system could get out of control. The industry's awareness of microbial corrosion has been indicated by the number of papers published in recent years on this subject. These articles cover a wide spectrum of interest from fundamental corrosion mechanisms to case studies, detection methods, control measures, etc. Although it is not clear to what extent microorganisms are responsible for the observed field corrosion failures, the general consensus still favors early establishment of a routine microbial corrosion monitoring program. The best approach seems to he the establishment of solid baseline data for the system after which any significant future deviation can be interpreted as a sign of a potential problem. The following sections describe the current methods used for routine monitoring, specifically for Aramco's large oilfield water systems. The limitations of these methods, the difficulties encountered, and some suggested studies for modification and improvement are discussed also. Current Monitoring Methods The methods currently used by Aramco can be categorized as (l) cell counts in water, (2) metal surface examination, (3) scraping solids analysis, (4) water quality analysis, and (5) evaluation of current bactericide treatment. Cell Counts in Water. These are used to detect bacterial organisms and their concentrations. it is recognized that confirmation of free-flowing bacteria in the water does not automatically mean trouble. However, if bacteria counts demonstrate a definite increase across the system, or over a period of time, the odds are that bacteria are active and working on the metal somewhere in the system. Cell counts routinely monitored include sulfate-reducing bacteria (SRB), general aerobic bacteria (OAB), iron bacteria, and others. SRB are widely recognized to he primarily responsible for bacteria-induced corrosion in an anaerobic environment. Depending on the nature of the sample to be tested and the types of problems encountered (or expected) in the field, one or several different enumeration techniques are employed. For field work, the method generally used by Aramco is culturing of samples in liquid growth media specifically designed for detecting a certain group of organisms. These laboratory media are prepared using the appropriate field water as a base, with addition of general growth nutrients for the organisms. The use of field water to prepare the media provides a water composition similar to that in which the bacteria originated. The media are supplemented with other ingredients to create an environment conducive to growth of certain bacteria (e.g., certain reducing agents have to he added into the SRB media). The media then are dispensed into serum vials at exactly 9 mL [9 cm3] each and sealed with rubber stoppers and aluminum seals. JPT P. 1171
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: G. P. Mercier; Yogesh Jaluria;An experimental study on the flow and heat transfer in open vertical enclosures, representing elevator shafts, warehouses, and atriums, due to a building fire is carried out, using a scale model. Smoke and hot gases are injected into the enclosure at a lower opening and the resulting downstream flow and temperature fields are studied. The inlet temperature and flow rate of the hot gases are varied over wide ranges to simulate the flow due to fire in multi-leveled buildings with vertical open shafts or atriums under natural ventilation. The conditions at the outlet, which is located on the same wall as the inlet, are also monitored to determine the effects of entrainment into the flow and heat transfer to the walls. Typical values of the operating conditions have been investigated, ranging from high buoyancy levels, for which the flow stays close to the vertical wall of the enclosure, to much lower levels, at which the flow enters the enclosure with a significant flow velocity and spreads outward very quickly. With increasing temperature at the inlet, the buoyancy effect is larger, resulting in higher velocities and shorter time to reach the top. The measured temperature at the outlet depends on heat transfer to the walls as well as on the flow velocity. Detailed measurements of the velocity and temperature fields have also been taken. It is found that a wall plume is generated which conveys the hot fluid rapidly along the vertical wall containing the inlet and the outlet. A recirculating flow arises away from this wall and this flow affects the heat transfer and flow in the wall plume. This feature, in turn, affects the entrainment into the flow, decay of the temperature level and the evolution of mean flow. Therefore, horizontally uniform conditions cannot be assumed here, as employed in several studies of tall enclosures. The wall plume has to be modeled in this case, considering the entrainment into the boundary layer flow and the effect of the recirculating flow.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0894-1777(99)00012-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0894-1777(99)00012-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2004Publisher:Elsevier BV Authors: Snorre Kverndokk; Knut Einar Rosendahl; Knut Einar Rosendahl; Thomas F. Rutherford;doi: 10.2139/ssrn.519344
We study the role of technology subsidies in climate policies, using a simple dynamic equilibrium model with learning-by-doing. The optimal subsidy rate of a carbon-free technology is high when the technology is first adopted, but falls significantly over the next decades. However, the efficiency costs of uniform instead of optimal subsidies, may be low if there are introduction or expansion constraints for a new technology. Finally, supporting existing energy technologies only, may lead to technology lock-in, and the impacts of lock-in increase with the learning potential of new technologies as well as the possibilities for early entry and thight carbon constraints.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.519344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.519344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Kelly Klima; Meghan Doherty; Jessica J. Hellmann; Jessica J. Hellmann;AbstractClimate change poses new and unique challenges that threaten lives and livelihoods. Given the increasing risks and looming uncertainty of climate change, increasing attention has been directed towards adaptation, or the strategies that enable humanity to persist and thrive through climate change the best it can. Though climate change is a global problem often discussed at the national scale, urban areas are increasingly seen as having a distinct role, and distinctive motivation and capacity, for adaptation. The 12 articles in this special issue explore ways of understanding and addressing climate change impacts on urban areas. Together they reveal young but rapidly growing scholarship on how to measure, and then overcome, challenges of climate change. Two key themes emerge in this issue: 1) that we must identify and then overcome current barriers to urban adaptation and 2) frameworks/metrics are necessary to identify and track adaptation progress in urban settings. Both of these themes point to the power of indicators and other quantitative information to inform priorities and illuminate the pathway forward for adaptation. As climate change is an entirely new challenge, careful measurement that enables investment by private and public parties is necessary to provide efficient outcomes that benefit the greatest number of people.
Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Science & PolicyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Science & PolicyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United KingdomPublisher:Public Library of Science (PLoS) Funded by:WT, UKRI | The Autonomic Power Syste...WT ,UKRI| The Autonomic Power SystemParker, Miles; Acland, Andrew; Armstrong, Harry J.; Bellingham, Jim R.; Bland, Jessica; Bodmer, Helen C.; Burall, Simon; Castell, Sarah; Chilvers, Jason; Cleevely, David D.; Cope, David; Costanzo, Lucia; Dolan, James A.; Doubleday, Robert; Feng, Wai Yi; Godfray, H. Charles J.; Good, David A.; Grant, Jonathan; Green, Nick; Groen, Arnoud J.; Guilliams, Tim T.; Gupta, Sunjai; Hall, Amanda C.; Heathfield, Adam; Hotopp, Ulrike; Kass, Gary; Leeder, Tim; Lickorish, Fiona A.; Lueshi, Leila M.; Magee, Chris; Mata, Tiago; McBride, Tony; McCarthy, Natasha; Mercer, Alan; Neilson, Ross; Ouchikh, Jackie; Oughton, Edward J.; Oxenham, David; Pallett, Helen; Palmer, James; Patmore, Jeff; Petts, Judith; Pinkerton, Jan; Ploszek, Richard; Pratt, Alan; Rocks, Sophie A.; Stansfield, Neil; Surkovic, Elizabeth; Tyler, Christopher P.; Watkinson, Andrew R.; Wentworth, Jonny; Willis, Rebecca; Wollner, Patrick K. A.; Worts, Kim; Sutherland, William J.;pmid: 24879444
pmc: PMC4039428
Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0096480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0096480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Zia Ud Din; Zia Ud Din; Zainal Alimuddin Zainal;Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Amit U. Raysoni; Esmeralda Mendez; August Luna; Joe Collins;doi: 10.3390/su14074288
Aggregate and limestone mining in San Antonio’s Bexar and Comal counties in Texas, USA, has caused considerable health concerns as of late. Aggregate mining actions can result in localized air quality issues in any neighborhood. Furthermore, heavy truck traffic, hauling, and transportation of the mined material contribute to pollution. In this research, PM species were sampled at four locations north of the San Antonio city limits. The data were collected using a TSI Air Quality Sampler that sampled PM1, PM2.5, PM4, PM10, wind speed, wind direction, temperature, and relative humidity. Continuous data with 1 min averages were recorded during the study period from August to September 2019. The instrument was stationed at every location for a period of 7 days each. The four locations were a ranch, an open field, a residential compound, and an elementary school. PM1 and PM2.5 concentration levels were lower compared to PM10 concentrations at all four studied sites. Our results suggest that PM concentrations are primarily impacted by mining activities. PM species were highest at the residential compound due to its proximity to an active mining area, resulting in deleterious health effects for neighbors living in the vicinity of the sampled site.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kristen S. Cetin; Youngme Seo; Jasmeet Singh; Jongho Im;Abstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2000Embargo end date: 01 Jan 2000Publisher:arXiv Funded by:SNSF | Profil 98/99 Nuclear aspe..., NSF | U.S.-Germany Cooperative ...SNSF| Profil 98/99 Nuclear aspects of stellar and explosive nucleosynthesis ,NSF| U.S.-Germany Cooperative Research: Massive Stars, Supernovae and NucleosynthesisAuthors: Heger, A.; Hoffman, R. D.; Rauscher, T.; Woosley, S. E.;We present the first calculations to follow the evolution of all stable isotopes (and their abundant radioactive progenitors) in a finely zoned stellar model computed from the onset of central hydrogen burning through explosion as a Type II supernova. The calculations were performed for a 15 solar mass Pop I star using the most recently available set of experimental and theoretical nuclear data, revised opacity tables, and taking into account mass loss due to stellar winds. We find the approximately solar production of proton-rich isotopes above a mass number of A=120 due to the gamma-process. We also find a weak s-process, which along with the gamma-process and explosive helium and carbon burning, produces nearly solar abundances of almost all nuclei from A=60 to 85. A few modifications of the abundances of heavy nuclei above mass 90 by the s-process are also noted and discussed. New weak rates lead to significant alteration of the properties of the presupernova core. 10 pages, 4 figures, Nuclear Astrophysics X Workshop proceedings
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2000License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.astro-ph/0006350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2000License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.astro-ph/0006350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Leslie Prufert-Bebout; Carley Corrado; Katie L. Hellier; Cécile E. Mioni; Jordan J. Allen; Erich E. Fleming; Brad M. Bebout; Angela M. Detweiler; Sue A. Carter;Abstract Large-scale cultivation of microalgal biomass in open systems can benefit from the low cost of using natural sunlight, as opposed to artificial light, but may encounter problems with photoinhibition, high evaporation rates, potential contamination and high energy demand. Wavelength selective luminescent solar concentrator (LSC) panels can solve some of these problems when incorporated into low-cost sheltered structures for algal biomass production that concurrently produce their own electricity by harnessing select portions of solar energy, not used for algal growth. The LSC panels in this study contained a fluorescent dye, Lumogen Red 305, which transmits blue and red wavelengths used for photosynthesis with high efficiency, while absorbing the green wavelengths and re-emitting them as red wavelengths. The fluorescently generated red wavelengths are either transmitted to boost algal growth, or waveguided and captured by photovoltaic cells to be converted into electricity. We found that different strains of microalgae (currently used commercially) grew equally well under the altered spectral conditions created by the luminescent panels, compared to growth under the full solar spectrum. Thus this technology presents a new approach wherein algae can be grown under protected, controlled conditions, while the cost of operations is offset by the structure's internal electrical production, without any loss to algal growth rate or achievable biomass density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Society of Petroleum Engineers (SPE) Authors: R.B. Chen; E.Y. Chen;doi: 10.2118/11509-pa
Summary Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations, and possible areas for improvement. These improved techniques are in use or will be implemented in the Aramco systems. Introduction Microbial corrosion has caused some failures in seawater injection systems. Whether or not microbial corrosion represents a major corrosion mechanism in the oilfield water system is a controversial question. However, it has certainly become a major concern in recent years. There are two approaches in dealing with microbial corrosion problems in a large oilfield water system. One approach is to start treating the system with bactericide in conjunction with regular scraping when the system is commissioned. The other is to treat the system only when an impending microbial-related problem is clearly defined. in either case, monitoring of microbial corrosion is essential. The first approach is more or less a precautionary measure. The treatment and selection of bactericides is usually based on past experience and laboratory evaluation tests. While the treatment is being implemented, a reliable monitoring program could assess the effectiveness of the current program of microbial corrosion control. In the second case, monitoring of microbial corrosion is even more important. it would provide timely information toward implementation of a treatment program before the system could get out of control. The industry's awareness of microbial corrosion has been indicated by the number of papers published in recent years on this subject. These articles cover a wide spectrum of interest from fundamental corrosion mechanisms to case studies, detection methods, control measures, etc. Although it is not clear to what extent microorganisms are responsible for the observed field corrosion failures, the general consensus still favors early establishment of a routine microbial corrosion monitoring program. The best approach seems to he the establishment of solid baseline data for the system after which any significant future deviation can be interpreted as a sign of a potential problem. The following sections describe the current methods used for routine monitoring, specifically for Aramco's large oilfield water systems. The limitations of these methods, the difficulties encountered, and some suggested studies for modification and improvement are discussed also. Current Monitoring Methods The methods currently used by Aramco can be categorized as (l) cell counts in water, (2) metal surface examination, (3) scraping solids analysis, (4) water quality analysis, and (5) evaluation of current bactericide treatment. Cell Counts in Water. These are used to detect bacterial organisms and their concentrations. it is recognized that confirmation of free-flowing bacteria in the water does not automatically mean trouble. However, if bacteria counts demonstrate a definite increase across the system, or over a period of time, the odds are that bacteria are active and working on the metal somewhere in the system. Cell counts routinely monitored include sulfate-reducing bacteria (SRB), general aerobic bacteria (OAB), iron bacteria, and others. SRB are widely recognized to he primarily responsible for bacteria-induced corrosion in an anaerobic environment. Depending on the nature of the sample to be tested and the types of problems encountered (or expected) in the field, one or several different enumeration techniques are employed. For field work, the method generally used by Aramco is culturing of samples in liquid growth media specifically designed for detecting a certain group of organisms. These laboratory media are prepared using the appropriate field water as a base, with addition of general growth nutrients for the organisms. The use of field water to prepare the media provides a water composition similar to that in which the bacteria originated. The media are supplemented with other ingredients to create an environment conducive to growth of certain bacteria (e.g., certain reducing agents have to he added into the SRB media). The media then are dispensed into serum vials at exactly 9 mL [9 cm3] each and sealed with rubber stoppers and aluminum seals. JPT P. 1171
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: G. P. Mercier; Yogesh Jaluria;An experimental study on the flow and heat transfer in open vertical enclosures, representing elevator shafts, warehouses, and atriums, due to a building fire is carried out, using a scale model. Smoke and hot gases are injected into the enclosure at a lower opening and the resulting downstream flow and temperature fields are studied. The inlet temperature and flow rate of the hot gases are varied over wide ranges to simulate the flow due to fire in multi-leveled buildings with vertical open shafts or atriums under natural ventilation. The conditions at the outlet, which is located on the same wall as the inlet, are also monitored to determine the effects of entrainment into the flow and heat transfer to the walls. Typical values of the operating conditions have been investigated, ranging from high buoyancy levels, for which the flow stays close to the vertical wall of the enclosure, to much lower levels, at which the flow enters the enclosure with a significant flow velocity and spreads outward very quickly. With increasing temperature at the inlet, the buoyancy effect is larger, resulting in higher velocities and shorter time to reach the top. The measured temperature at the outlet depends on heat transfer to the walls as well as on the flow velocity. Detailed measurements of the velocity and temperature fields have also been taken. It is found that a wall plume is generated which conveys the hot fluid rapidly along the vertical wall containing the inlet and the outlet. A recirculating flow arises away from this wall and this flow affects the heat transfer and flow in the wall plume. This feature, in turn, affects the entrainment into the flow, decay of the temperature level and the evolution of mean flow. Therefore, horizontally uniform conditions cannot be assumed here, as employed in several studies of tall enclosures. The wall plume has to be modeled in this case, considering the entrainment into the boundary layer flow and the effect of the recirculating flow.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0894-1777(99)00012-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0894-1777(99)00012-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2004Publisher:Elsevier BV Authors: Snorre Kverndokk; Knut Einar Rosendahl; Knut Einar Rosendahl; Thomas F. Rutherford;doi: 10.2139/ssrn.519344
We study the role of technology subsidies in climate policies, using a simple dynamic equilibrium model with learning-by-doing. The optimal subsidy rate of a carbon-free technology is high when the technology is first adopted, but falls significantly over the next decades. However, the efficiency costs of uniform instead of optimal subsidies, may be low if there are introduction or expansion constraints for a new technology. Finally, supporting existing energy technologies only, may lead to technology lock-in, and the impacts of lock-in increase with the learning potential of new technologies as well as the possibilities for early entry and thight carbon constraints.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.519344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.519344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu