search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
43,236 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • US
  • DE
  • CN
  • HK
  • English

  • Authors: Mercer, C.; Jump, A.; Morley, P.; O’Sullivan, K.; +2 Authors

    Tree cores were sampled using increment borers. At each site three trees were chosen for coring, with two or three cores taken per tree. Cores were sanded and ring widths measured based on high-resolution images of the sanded cores. Cores were cross-dated and summary statistics used to compare cross-dating accuracy. The dataset contains the resulting dated ring width series. This dataset includes tree ring width data, derived from tree cores, that were sampled from sites across the Rhön Biosphere Reserve (Germany). At each chosen site three trees were cored, with two or three cores taken per cored tree. Data was collected in August 2021.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pahwa, Anmol; Jaller, Miguel;

    This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; +17 Authors

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Schumacher, Emily; Brown, Alissa; Williams, Martin; Romero-Severson, Jeanne; +2 Authors

    For this manuscript, there were three types of methods performed to make our main conclusions: genetic diversity and structure analyses, downloading and mapping butternut fossil pollen during the last 20,000 years, and modeling and hindcasting butternut's (Juglans cinerea) distribution 20,000 years ago to present. Genetic analyses and species distribution modeling were performed in Emily Schumacher’s Github repository (https://github.com/ekschumacher/butternut) and pollen analyses and mapping were performed in Alissa Brown’s repository (https://github.com/alissab/juglans). Here is information detailing the Genetic data Data collection description: To perform genetic diversity and structure analyses on butternut, we used genetic data from the publication Hoban et al. (2010) and genetic data from newer sampling efforts on butternut from 2011 - 2015. Individuals were collected by Jeanne Romero-Severson, Sean Hoban, and Martin Williams over the course of ~ten years with a major sampling effort closer to 2009 followed up by another round of sampling 2012 - 2015. The initial 1,004 butternut individuals that were collected were genotyped by Sean Hoban and then the subsequent 757 individuals were genotyped in the Romero-Severson lab at Notre Dame non-consecutively. Genotyping was performed according to Hoban et al. (2008); DNA was extracted from fresh cut twigs using DNeasy Plant Mini kits (QIAGEN). PCR was performed by using 1.5 mM MgCl2, 1x PCR buffer [50 mm KCl, 10 mm Tris-HCl (pH 9.0), 0.1% Triton-X-100 (Fisher BioTech)], 0.2 mm dNTPs, 4 pm each forward and reverse primer, 4% Bovine Serum Albumin, 0.25 U TaKaRa Ex Taq Polymerase (Panvera), and 20 ng DNA template (10 μL total volume). The PCR temperature profile was as follows: 2 min at 94 °C; 30 cycles of 94 °C for 30 s, Ta for 30 s, and 72 °C for 30 s; 45 min at 60 °C; and 10 min at 72 °C on a PTC-225 Peltier Thermal Cycler (MJ Research). The process of assessing loci and rebinning for differences in years is detailed in the Schumacher et al. (2022) manuscript. Data files butternut_44pop.gen: Genepop file of original 1,761 butternut individuals, sampling described above, separated into original 44 sampling populations. butternut_24pop_nomd.gen: Genepop file of 1,635 butternut individuals, following rebinning based on researcher binning, reduced based on geographic isolation and missing data, organized into 24 populations. Used to generate all genetic diversity results. butternut_24pop_relate_red.gen: Genepop file of 993 butternut individuals, reduced for 25% relatedness, used to generate all clustering analyses. butternut_26pop_nomd.gen: Genepop file of 1,662 butternut individuals, reduced based on geographic isolation and missing data, including Quebec individuals, organized into 26 populations. Used to generate genetic diversity results with Quebec individuals. butternut_26pop_relate_red.gen: Genepop file of 1,015 butternut individuals, including Quebec individuals, reduced for 25% relatedness, used to generate clustering analyses with Quebec individuals. Fossil Pollen Data collection description: Pollen records for butternut were downloaded from Neotoma Paleoecology Database in 500-year time increments and visualized in 1,000 year-time increments 20,000 years ago to present. Data files butternut_pollen_data.csv: CSV of pollen records used for analyses and mapping. Includes original coordinates for each record (“og_long”, “og_lat”), the count of Juglans cinerea pollen at each site (“Juglans_cinerea_count”), and the age of the record (“Age”). To create the final maps, the coordinates were projected into Albers for each record (“Proj_Long,” “Proj_Lat”). Species Distribution Modeling and Hindcast Modeling Data collection description: We wanted to identify butternut's ecological preferences using boosted regression trees (BRT) and then hindcast distribution models into the past to identify migration pathways and locations of glacial refugia. Species distribution modeling was performed using boosted regression trees according to Elith et al. (2008). To run BRT, we needed to: 1. Reduce occurrence records to account for spatial autocorrelation, 2. Generate pseudo-absence points to identify the habitat where butternut is not found, 3. Obtain and extract the 19 bioclimatic variables at all points, 4. Select ecological variables least correlated with each other and most correlated with butternut presence. The BRT model that predicted butternut's ecological niche was then used to hypothesize butternut's suitable habitat and range shifts in the past. We downloaded occurrence records according to Beckman et al. (2019) as described here: https://github.com/MortonArb-ForestEcology/IMLS_CollectionsValue. The habitat suitability map generated from the BRT were projected into the past 20,000 years using Paleoclim variables (Brown et al., 2018). Data files butternut_BRT_var.csv: A CSV of the butternut presence and pseudoabsence points and extracted Bioclim variables (Fick & Hijman, 2017) used to run BRT in the final manuscript. Longitude and latitude coordinates are projected into Albers Equal Area Conic project, same with all of the ecological variables. Presence points are indicated with a 1 in the “PA” column and pseudo-absence points are indicated with a “0.” The variables most correlated with presence and least correlated with each other in this analysis were precipitation of the wettest month (“PwetM”), mean diurnal range (“MDR”), mean temperature of the driest quarter (“MTDQ”), mean temperature of the wettest quarter (“MTwetQ”), and seasonal precipitation (“precip_season”). References Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 5, 1-9 Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. Hoban, S., Anderson, R., McCleary, T., Schlarbaum, S., and Romero-Severson, J. (2008). Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.). Molecular Ecology Resources, 8, 643-646. Hoban, S. M., Borkowski, D. S., Brosi, S. L., McCleary, T. S., Thompson, L. M., McLachlan, J. S., ... Romero-Severson, J. (2010). Range‐wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Molecular Ecology, 19, 4876-4891. Aim: Range shifts are a key process that determine species distributions and genetic patterns. A previous investigation reported that Juglans cinerea (butternut) has lower genetic diversity at higher latitudes, hypothesized to be the result of range shifts following the last glacial period. However, genetic patterns can also be impacted by modern ecogeographic conditions. Therefore, we re-investigate genetic patterns of butternut with additional northern population sampling, hindcasted species distribution models, and fossil pollen records to clarify the impact of glaciation on butternut. Location: Eastern North America Taxon: Juglans cinerea (L., Juglandaceae) (butternut) Methods: Using 11 microsatellites, we examined range-wide spatial patterns of genetic diversity metrics (allelic richness, heterozygosity, FST) for previously studied butternut individuals and an additional 757 samples. We constructed hindcast species distribution models and mapped fossil pollen records to evaluate habitat suitability and evidence of species’ presence throughout space and time. Results: Contrary to previous work on butternut, we found that genetic diversity increased with distance to range edge, and previous latitudinal clines in diversity were likely due to a few outlier populations. Populations in New Brunswick, Canada were genetically distinct from other populations. At the Last Glacial Maximum, pollen records demonstrate butternut likely persisted near the glacial margin, and hindcast species distribution models identified suitable habitat in the southern United States and near Nova Scotia. Main conclusions: Genetic patterns in butternut may be shaped by both glaciation and modern environmental conditions. Pollen records and hindcast species distribution models combined with genetic distinctiveness in New Brunswick suggest that butternut may have persisted in cryptic northern refugia. We suggest that thorough sampling across a species range and evaluating multiple lines of evidence are essential to understanding past species movements. Data was cleaned and processed in R - genetic data cleaning and analyses and species distribution modeling methods were performed in Emily Schumacher's butternut repository and fossil pollen data cleaning and modeling was performed in Alissa Brown's juglans repository. Steps for performing data cleanining, analyses, and generating figures for the manuscript are described within each repo.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility64
    visibilityviews64
    downloaddownloads36
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yuan, Wei; Wang, Jie;

    Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;

    This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The World Bank Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The World Bank Open Data
    Dataset . 2018
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The World Bank Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The World Bank Open Data
      Dataset . 2018
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Parra, Adriana; Greenberg, Jonathan;

    This README file was generated on 2024-03-04 by Adriana Parra. ## GENERAL INFORMATION 1\. Title of Dataset: **Climate-limited vegetation change in the conterminous United States of America** 2\. Author Information A. First Author Contact Information Name: Adriana Parra Institution: University of Nevada, Reno Address: Reno, NV USA Email: adrianaparra@unr.edu B. Co-author Contact Information Name: Jonathan Greenberg Institution: University of Nevada, Reno Address: Reno, NV USA Email: jgreenberg@unr.edu 3\. Coverage period of the dataset: 1986-2018 4\. Geographic location of dataset: Conterminous United States 5\. Description: This dataset contains the input and the resulting rasters for the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal. The dataset includes a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor. Additionally, the dataset includes a legend file for the identified climatic limiting factor rasters. ## SHARING/ACCESS INFORMATION 1\. Links to publications that cite or use the data: **Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204)** 2\. Links to other publicly accessible locations of the data: None 3\. Links/relationships to ancillary data sets: None 4\. Was data derived from another source? Yes A. If yes, list source(s): "Vegetative Lifeform Cover from Landsat SR for CONUS" product publicly available in the ORNL DAAC (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) TerraClimate data catalog publicly available at the website https://www.climatologylab.org/terraclimate.html 5\. Recommended citation for this dataset: Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204) ## DATA & FILE OVERVIEW This dataset contains 16 geotiff files, and one csv file. There are 4 geotiff files per each of the lifeform classes evaluated in this study: herbaceous, tree, shrub, and non-vegetation. The files corresponding to each lifeform class are indicated by the first two letters in the file name, HC indicates herbaceous cover, TC indicates tree cover, SC indicates shrub cover, and NC indicates non-vegetation cover. 1\. File List: a) Observed change: Trends of vegetation change between 1986 and 2018. b) Potential predict: Predicted rates of vegetation change form the climate limiting factor analysis. c) Potential observed difference: Difference between the potential and the observed vegetation rates of change. d) Limiting variable: Climate variable identified as the limiting factor for each pixel the conterminous United States. e) Legend of the Limiting variable raster All the geotiff files are stored as Float 32 type, and in CONUS Albers Equal Area coordinate system (EPSG:5070) The csv file included in the dataset is the legend for the limiting variable geotiff files. This file includes the name of the climate variable corresponding to each number in the limiting variable files, as well as information on the variable type and the corresponding time lag. 2\. Relationship between files, if important: None 3\. Additional related data collected that was not included in the current data package: None 4\. Are there multiple versions of the dataset? No A. If yes, name of file(s) that was updated: NA i. Why was the file updated? NA ii. When was the file updated? NA Input data We use the available data from the “Vegetative Lifeform Cover from Landsat SR for CONUS” product (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) to evaluate the changes in vegetation fractional cover. The information for the climate factors was derived from the TerraClimate data catalog (https://www.climatologylab.org/terraclimate.html). We downloaded data from this catalog for the period 1971 to 2018 for the following variables: minimum temperature (TMIN), precipitation (PPT), actual evapotranspiration (AET), potential evapotranspiration (PET), and climatic water deficit (DEF). Preprocessing of vegetation fractional cover data We resampled and aligned the maps of fractional cover using pixel averaging to the extent and resolution of the TerraClimate dataset (~ 4 km). Then, we calculated rates of lifeform cover change per pixel using the Theil-Sen slope analysis (Sen, 1968; Theil, 1992). Preprocessing of climate variables data To process the climate data, we defined a year time step as the months from July of one year to July of the next. Following this definition, we constructed annual maps of each climate variable for the years 1971 to 2018. The annual maps of each climate variable were further summarized per pixel, into mean and slope (calculated as the Theil-Sen slope) across one, two, three, four, five, ten-, and 15-year lags. Estimation of climate potential We constructed a final multilayer dataset of response and predictor variables for the CONUS including the resulting maps of fractional cover rate of change (four response variables), the mean and slope maps for the climate variables for all the time-lags (70 predictor variables), and the initial percent cover for each lifeform in the year 1986 (four predictor variables). We evaluated for each pixel in the CONUS which of the predictor variables produced the minimum potential rate of change in fractional cover for each lifeform class. To do that, we first calculated the 100% quantile hull of the distribution of each predictor variable against each response variable. To calculate the 100% quantile of the predictor variables’ distribution we divided the total range of each predictor variable into equal-sized bins. The size and number of bins were set specifically per variable due to differences in their data distribution. For each of the bins, we calculated the maximum value of the vegetation rate of change, which resulted in a lookup table with the lower and upper boundaries of each bin, and the associated maximum rate of change. We constructed a total of 296 lookup tables, one per lifeform class and predictor variable combination. The resulting lookup tables were used to construct spatially explicit maps of maximum vegetation rate of change from each of the predictor variable input rasters, and the final climate potential maps were constructed by stacking all the resulting maps per lifeform class and selecting for each pixel the minimum predicted rate of change and the predictor variable that produced that rate. Identifying climate-limited areas We defined climate-limited areas as the parts of the CONUS with little or no differences between the estimated climate potential and the observed rates of change in fractional cover. To identify these areas, we subtracted the raster of observed rates of change from the raster of climate potential for each lifeform class. In the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal, we evaluated the effects of climate conditions on vegetation composition and distribution in the conterminous United States (CONUS). To disentangle the direct effects of climate change from different non-climate factors, we applied "Liebig's law of the minimum" in a geospatial context, and determined the climate-limited potential for tree, shrub, herbaceous, and non-vegetation fractional cover change. We then compared these potential rates against observed change rates for the period 1986 to 2018 to identify areas of the CONUS where vegetation change is likely being limited by climatic conditions. This dataset contains the input and the resulting rasters for the study which include a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Qi, Shu; Qiang, Wang; Zhenya, Song; Gui, Gao; +5 Authors

    The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community. The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
43,236 Research products
  • Authors: Mercer, C.; Jump, A.; Morley, P.; O’Sullivan, K.; +2 Authors

    Tree cores were sampled using increment borers. At each site three trees were chosen for coring, with two or three cores taken per tree. Cores were sanded and ring widths measured based on high-resolution images of the sanded cores. Cores were cross-dated and summary statistics used to compare cross-dating accuracy. The dataset contains the resulting dated ring width series. This dataset includes tree ring width data, derived from tree cores, that were sampled from sites across the Rhön Biosphere Reserve (Germany). At each chosen site three trees were cored, with two or three cores taken per cored tree. Data was collected in August 2021.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pahwa, Anmol; Jaller, Miguel;

    This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; +17 Authors

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Schumacher, Emily; Brown, Alissa; Williams, Martin; Romero-Severson, Jeanne; +2 Authors

    For this manuscript, there were three types of methods performed to make our main conclusions: genetic diversity and structure analyses, downloading and mapping butternut fossil pollen during the last 20,000 years, and modeling and hindcasting butternut's (Juglans cinerea) distribution 20,000 years ago to present. Genetic analyses and species distribution modeling were performed in Emily Schumacher’s Github repository (https://github.com/ekschumacher/butternut) and pollen analyses and mapping were performed in Alissa Brown’s repository (https://github.com/alissab/juglans). Here is information detailing the Genetic data Data collection description: To perform genetic diversity and structure analyses on butternut, we used genetic data from the publication Hoban et al. (2010) and genetic data from newer sampling efforts on butternut from 2011 - 2015. Individuals were collected by Jeanne Romero-Severson, Sean Hoban, and Martin Williams over the course of ~ten years with a major sampling effort closer to 2009 followed up by another round of sampling 2012 - 2015. The initial 1,004 butternut individuals that were collected were genotyped by Sean Hoban and then the subsequent 757 individuals were genotyped in the Romero-Severson lab at Notre Dame non-consecutively. Genotyping was performed according to Hoban et al. (2008); DNA was extracted from fresh cut twigs using DNeasy Plant Mini kits (QIAGEN). PCR was performed by using 1.5 mM MgCl2, 1x PCR buffer [50 mm KCl, 10 mm Tris-HCl (pH 9.0), 0.1% Triton-X-100 (Fisher BioTech)], 0.2 mm dNTPs, 4 pm each forward and reverse primer, 4% Bovine Serum Albumin, 0.25 U TaKaRa Ex Taq Polymerase (Panvera), and 20 ng DNA template (10 μL total volume). The PCR temperature profile was as follows: 2 min at 94 °C; 30 cycles of 94 °C for 30 s, Ta for 30 s, and 72 °C for 30 s; 45 min at 60 °C; and 10 min at 72 °C on a PTC-225 Peltier Thermal Cycler (MJ Research). The process of assessing loci and rebinning for differences in years is detailed in the Schumacher et al. (2022) manuscript. Data files butternut_44pop.gen: Genepop file of original 1,761 butternut individuals, sampling described above, separated into original 44 sampling populations. butternut_24pop_nomd.gen: Genepop file of 1,635 butternut individuals, following rebinning based on researcher binning, reduced based on geographic isolation and missing data, organized into 24 populations. Used to generate all genetic diversity results. butternut_24pop_relate_red.gen: Genepop file of 993 butternut individuals, reduced for 25% relatedness, used to generate all clustering analyses. butternut_26pop_nomd.gen: Genepop file of 1,662 butternut individuals, reduced based on geographic isolation and missing data, including Quebec individuals, organized into 26 populations. Used to generate genetic diversity results with Quebec individuals. butternut_26pop_relate_red.gen: Genepop file of 1,015 butternut individuals, including Quebec individuals, reduced for 25% relatedness, used to generate clustering analyses with Quebec individuals. Fossil Pollen Data collection description: Pollen records for butternut were downloaded from Neotoma Paleoecology Database in 500-year time increments and visualized in 1,000 year-time increments 20,000 years ago to present. Data files butternut_pollen_data.csv: CSV of pollen records used for analyses and mapping. Includes original coordinates for each record (“og_long”, “og_lat”), the count of Juglans cinerea pollen at each site (“Juglans_cinerea_count”), and the age of the record (“Age”). To create the final maps, the coordinates were projected into Albers for each record (“Proj_Long,” “Proj_Lat”). Species Distribution Modeling and Hindcast Modeling Data collection description: We wanted to identify butternut's ecological preferences using boosted regression trees (BRT) and then hindcast distribution models into the past to identify migration pathways and locations of glacial refugia. Species distribution modeling was performed using boosted regression trees according to Elith et al. (2008). To run BRT, we needed to: 1. Reduce occurrence records to account for spatial autocorrelation, 2. Generate pseudo-absence points to identify the habitat where butternut is not found, 3. Obtain and extract the 19 bioclimatic variables at all points, 4. Select ecological variables least correlated with each other and most correlated with butternut presence. The BRT model that predicted butternut's ecological niche was then used to hypothesize butternut's suitable habitat and range shifts in the past. We downloaded occurrence records according to Beckman et al. (2019) as described here: https://github.com/MortonArb-ForestEcology/IMLS_CollectionsValue. The habitat suitability map generated from the BRT were projected into the past 20,000 years using Paleoclim variables (Brown et al., 2018). Data files butternut_BRT_var.csv: A CSV of the butternut presence and pseudoabsence points and extracted Bioclim variables (Fick & Hijman, 2017) used to run BRT in the final manuscript. Longitude and latitude coordinates are projected into Albers Equal Area Conic project, same with all of the ecological variables. Presence points are indicated with a 1 in the “PA” column and pseudo-absence points are indicated with a “0.” The variables most correlated with presence and least correlated with each other in this analysis were precipitation of the wettest month (“PwetM”), mean diurnal range (“MDR”), mean temperature of the driest quarter (“MTDQ”), mean temperature of the wettest quarter (“MTwetQ”), and seasonal precipitation (“precip_season”). References Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 5, 1-9 Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. Hoban, S., Anderson, R., McCleary, T., Schlarbaum, S., and Romero-Severson, J. (2008). Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.). Molecular Ecology Resources, 8, 643-646. Hoban, S. M., Borkowski, D. S., Brosi, S. L., McCleary, T. S., Thompson, L. M., McLachlan, J. S., ... Romero-Severson, J. (2010). Range‐wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Molecular Ecology, 19, 4876-4891. Aim: Range shifts are a key process that determine species distributions and genetic patterns. A previous investigation reported that Juglans cinerea (butternut) has lower genetic diversity at higher latitudes, hypothesized to be the result of range shifts following the last glacial period. However, genetic patterns can also be impacted by modern ecogeographic conditions. Therefore, we re-investigate genetic patterns of butternut with additional northern population sampling, hindcasted species distribution models, and fossil pollen records to clarify the impact of glaciation on butternut. Location: Eastern North America Taxon: Juglans cinerea (L., Juglandaceae) (butternut) Methods: Using 11 microsatellites, we examined range-wide spatial patterns of genetic diversity metrics (allelic richness, heterozygosity, FST) for previously studied butternut individuals and an additional 757 samples. We constructed hindcast species distribution models and mapped fossil pollen records to evaluate habitat suitability and evidence of species’ presence throughout space and time. Results: Contrary to previous work on butternut, we found that genetic diversity increased with distance to range edge, and previous latitudinal clines in diversity were likely due to a few outlier populations. Populations in New Brunswick, Canada were genetically distinct from other populations. At the Last Glacial Maximum, pollen records demonstrate butternut likely persisted near the glacial margin, and hindcast species distribution models identified suitable habitat in the southern United States and near Nova Scotia. Main conclusions: Genetic patterns in butternut may be shaped by both glaciation and modern environmental conditions. Pollen records and hindcast species distribution models combined with genetic distinctiveness in New Brunswick suggest that butternut may have persisted in cryptic northern refugia. We suggest that thorough sampling across a species range and evaluating multiple lines of evidence are essential to understanding past species movements. Data was cleaned and processed in R - genetic data cleaning and analyses and species distribution modeling methods were performed in Emily Schumacher's butternut repository and fossil pollen data cleaning and modeling was performed in Alissa Brown's juglans repository. Steps for performing data cleanining, analyses, and generating figures for the manuscript are described within each repo.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility64
    visibilityviews64
    downloaddownloads36
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yuan, Wei; Wang, Jie;

    Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;

    This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The World Bank Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The World Bank Open Data
    Dataset . 2018
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The World Bank Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The World Bank Open Data
      Dataset . 2018
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Parra, Adriana; Greenberg, Jonathan;

    This README file was generated on 2024-03-04 by Adriana Parra. ## GENERAL INFORMATION 1\. Title of Dataset: **Climate-limited vegetation change in the conterminous United States of America** 2\. Author Information A. First Author Contact Information Name: Adriana Parra Institution: University of Nevada, Reno Address: Reno, NV USA Email: adrianaparra@unr.edu B. Co-author Contact Information Name: Jonathan Greenberg Institution: University of Nevada, Reno Address: Reno, NV USA Email: jgreenberg@unr.edu 3\. Coverage period of the dataset: 1986-2018 4\. Geographic location of dataset: Conterminous United States 5\. Description: This dataset contains the input and the resulting rasters for the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal. The dataset includes a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor. Additionally, the dataset includes a legend file for the identified climatic limiting factor rasters. ## SHARING/ACCESS INFORMATION 1\. Links to publications that cite or use the data: **Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204)** 2\. Links to other publicly accessible locations of the data: None 3\. Links/relationships to ancillary data sets: None 4\. Was data derived from another source? Yes A. If yes, list source(s): "Vegetative Lifeform Cover from Landsat SR for CONUS" product publicly available in the ORNL DAAC (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) TerraClimate data catalog publicly available at the website https://www.climatologylab.org/terraclimate.html 5\. Recommended citation for this dataset: Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204) ## DATA & FILE OVERVIEW This dataset contains 16 geotiff files, and one csv file. There are 4 geotiff files per each of the lifeform classes evaluated in this study: herbaceous, tree, shrub, and non-vegetation. The files corresponding to each lifeform class are indicated by the first two letters in the file name, HC indicates herbaceous cover, TC indicates tree cover, SC indicates shrub cover, and NC indicates non-vegetation cover. 1\. File List: a) Observed change: Trends of vegetation change between 1986 and 2018. b) Potential predict: Predicted rates of vegetation change form the climate limiting factor analysis. c) Potential observed difference: Difference between the potential and the observed vegetation rates of change. d) Limiting variable: Climate variable identified as the limiting factor for each pixel the conterminous United States. e) Legend of the Limiting variable raster All the geotiff files are stored as Float 32 type, and in CONUS Albers Equal Area coordinate system (EPSG:5070) The csv file included in the dataset is the legend for the limiting variable geotiff files. This file includes the name of the climate variable corresponding to each number in the limiting variable files, as well as information on the variable type and the corresponding time lag. 2\. Relationship between files, if important: None 3\. Additional related data collected that was not included in the current data package: None 4\. Are there multiple versions of the dataset? No A. If yes, name of file(s) that was updated: NA i. Why was the file updated? NA ii. When was the file updated? NA Input data We use the available data from the “Vegetative Lifeform Cover from Landsat SR for CONUS” product (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) to evaluate the changes in vegetation fractional cover. The information for the climate factors was derived from the TerraClimate data catalog (https://www.climatologylab.org/terraclimate.html). We downloaded data from this catalog for the period 1971 to 2018 for the following variables: minimum temperature (TMIN), precipitation (PPT), actual evapotranspiration (AET), potential evapotranspiration (PET), and climatic water deficit (DEF). Preprocessing of vegetation fractional cover data We resampled and aligned the maps of fractional cover using pixel averaging to the extent and resolution of the TerraClimate dataset (~ 4 km). Then, we calculated rates of lifeform cover change per pixel using the Theil-Sen slope analysis (Sen, 1968; Theil, 1992). Preprocessing of climate variables data To process the climate data, we defined a year time step as the months from July of one year to July of the next. Following this definition, we constructed annual maps of each climate variable for the years 1971 to 2018. The annual maps of each climate variable were further summarized per pixel, into mean and slope (calculated as the Theil-Sen slope) across one, two, three, four, five, ten-, and 15-year lags. Estimation of climate potential We constructed a final multilayer dataset of response and predictor variables for the CONUS including the resulting maps of fractional cover rate of change (four response variables), the mean and slope maps for the climate variables for all the time-lags (70 predictor variables), and the initial percent cover for each lifeform in the year 1986 (four predictor variables). We evaluated for each pixel in the CONUS which of the predictor variables produced the minimum potential rate of change in fractional cover for each lifeform class. To do that, we first calculated the 100% quantile hull of the distribution of each predictor variable against each response variable. To calculate the 100% quantile of the predictor variables’ distribution we divided the total range of each predictor variable into equal-sized bins. The size and number of bins were set specifically per variable due to differences in their data distribution. For each of the bins, we calculated the maximum value of the vegetation rate of change, which resulted in a lookup table with the lower and upper boundaries of each bin, and the associated maximum rate of change. We constructed a total of 296 lookup tables, one per lifeform class and predictor variable combination. The resulting lookup tables were used to construct spatially explicit maps of maximum vegetation rate of change from each of the predictor variable input rasters, and the final climate potential maps were constructed by stacking all the resulting maps per lifeform class and selecting for each pixel the minimum predicted rate of change and the predictor variable that produced that rate. Identifying climate-limited areas We defined climate-limited areas as the parts of the CONUS with little or no differences between the estimated climate potential and the observed rates of change in fractional cover. To identify these areas, we subtracted the raster of observed rates of change from the raster of climate potential for each lifeform class. In the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal, we evaluated the effects of climate conditions on vegetation composition and distribution in the conterminous United States (CONUS). To disentangle the direct effects of climate change from different non-climate factors, we applied "Liebig's law of the minimum" in a geospatial context, and determined the climate-limited potential for tree, shrub, herbaceous, and non-vegetation fractional cover change. We then compared these potential rates against observed change rates for the period 1986 to 2018 to identify areas of the CONUS where vegetation change is likely being limited by climatic conditions. This dataset contains the input and the resulting rasters for the study which include a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Qi, Shu; Qiang, Wang; Zhenya, Song; Gui, Gao; +5 Authors

    The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community. The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.