search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
734 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 1. No poverty
  • 3. Good health
  • US
  • GB
  • DE
  • English

  • Authors: Craig Kennedy; John Glenn; Natalie La Balme; Pierangelo Isernia; +2 Authors

    The aim of this study was to identify the attitudes of the public in the United States and in 12 European countries towards foreign policy issues and transatlantic issues. The survey concentrated on issues such as: United States and European Union (EU) leadership and relations, favorability towards certain countries, institutions and people, security, cooperation and the perception of threat including issues of concern with Afghanistan, Iran, and Russia, energy dependence, economic downturn, and global warming, Turkey and Turkish accession to the EU, promotion of democracy in other countries, and the importance of economic versus military power. Several questions asked of respondents pertained to voting and politics including whether they discussed political matters with friends and whether they attempted to persuade others close to them to share their views on politics which they held strong opinions about, vote intention, their assessment of the current United States President and upcoming presidential election, political party attachment, and left-right political self-placement. Demographic and other background information includes age, gender, race, ethnicity, religious affiliation and participation, age when stopped full-time education and stage at which full-time education completed, occupation, number of people aged 18 years and older living in the household, type of locality, region of residence, prior travel to the United States or Europe, and language of interview. computer-assisted personal interview (CAPI); computer-assisted telephone interview (CATI); paper and pencil interview (PAPI)The original data collection was carried out by TNS, Fait et Opinion -- Brussels on request of the German Marshall Fund of the United States.The codebook and setup files for this collection contain characters with diacritical marks used in many European languages.A split ballot was used for one or more questions in this survey. The variable SPLIT defines the separate groups.For data collection, the computer-assisted face-to-face interview was used in Poland, the paper and pencil interview was used in Bulgaria, Romania, Slovakia and Turkey, and the computer-assisted telephone interview was used in all other countries.Additional information on the Transatlantic Trends Survey is provided on the Transatlantic Trends Web site. (1) Multistage random sampling was implemented in the countries using face-to-face interviewing. Sampling points were selected according to region, and then random routes were conducted within these sampling points. Four callbacks were used for each address. The birthday rule was used to randomly select respondents within a household. (2) Random Digit Dialing was implemented in the countries using telephone interviewing. Eight callbacks were used for each telephone number. The birthday rule was used to randomly select respondents within a household. The adult population aged 18 years and over in 13 countries: Bulgaria, France, Germany, Italy, the Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Turkey, the United Kingdom, and the United States. Smallest Geographic Unit: country Response Rates: The total response rate for all countries surveyed is 23 percent. Please refer to the "Technical Note" in the ICPSR codebook for additional information about response rate. Please refer to the "Technical Note" in the ICPSR codebook for further information about weighting. Datasets: DS1: Transatlantic Trends Survey, 2008

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: World Bank Group;

    The country’s unique philosophy is expressed by Bhutan’s Gross National Happiness (GNH) as the guiding principle of development. Bhutan is at a crossroads: It can maintain the current pattern of development—with rising inequality—or develop a vibrant private sector to generate jobs and diversify the economy, building resilience to future external shocks. The overarching priority of this Country Partnership Framework (CPF) is job creation. This CPF presents an integrated framework of WBG support to help Bhutan achieve inclusive and sustainable development through private sector–led job creation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Knowledge Repos...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Open Knowledge Repository
    Other ORP type . 2021
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Knowledge Repos...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Open Knowledge Repository
      Other ORP type . 2021
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Polasky, Stephen; Nelson, Erik; Tilman, David; Gerber, James; +5 Authors

    We analyze past and anticipated future trends in crop yields, per capita consumption, and population to estimate agricultural land requirements globally by 2050 and 2100. Assuming “business as usual,” higher-income countries are expected to show little or no net growth in cropland by the end of the century, even in the face of moderate climate change. In contrast, in lower-income countries, we project that land requirements will grow dramatically, and climate change will likely double this expansion. Although economic growth is often considered to work in opposition to conservation, accelerating economic development in lower-income countries, which would help alleviate poverty and increase standards of living, would also greatly reduce potential cropland expansion in lower-income countries, even with climate change, owing to slower population growth and improved crop yields that more than offset increased per capita consumption. Combining economic development in low-income countries with reduced consumption in high-income countries could dramatically shrink global cropland requirements by the year 2100 even with moderate climate change. Such a remarkable reduction in cropland area would have enormous benefits for both biodiversity and global climate change.  All of the data files are analyzed using R.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; +5 Authors

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
  • Authors: Mwai, Eva; Dr. Aloys O. Ojore; Dr. Tobias Nyumba;

    Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results. Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Drewer, J.; White, S.; Sionita, R.; Pujianto, P.;

    This dataset contains terrestrial fluxes of nitrous oxide (N2O), methane (CH4) and ecosystem respiration (carbon dioxide (CO2)) calculated from static chamber measurements in riparian buffers of oil palm plantations on mineral soil, in Riau, Sumatra, Indonesia. Measurements were made monthly, from January 2019 until September 2021, with a break from April 2019 to October 2019 to allow for felling and replanting, and another break from January 2021 to June 2021 due to Covid-19 restrictions. To help to reduce the environmental impact of oil palm plantations, riparian buffers are now required by regulations in many Southeast Asian countries. The experiments were conducted to investigate the impact of greenhouse gas emissions from the riparian buffers. Research was funded through NERC grant NE/R000131/1 Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) Greenhouse gas concentrations were measured using static chambers, enclosed for 45 minutes. Multiple regressions (including linear and hierarchical multiple regression) were fitted to calculate the best fit flux, using the RCflux R package, written by Dr Peter Levy (UKCEH).

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;

    We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.4228/zal...
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.4228/zal...
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
  • Authors: Liu, Maggie; Shamdasani, Yogita; Taraz, Vis;

    How do rising temperatures affect long-term labor reallocation in developing economies? In this paper, we examine how increases in temperature impact structural transformation and urbanization within Indian districts between 1951 and 2011. We find that rising temperatures are associated with lower shares of workers in non-agriculture, with effects intensifying over a longer time frame. Supporting evidence suggests that local demand effects play an important role: declining agricultural productivity under higher temperatures reduces the demand for non-agricultural goods and services, which subsequently lowers non-agricultural labor demand. Our results illustrate that rising temperatures limit sectoral and rural-urban mobility for isolated households. Districts in India .

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    {"references": ["Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Br\u00e9on, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K. & Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11, 5172 (2020). https://doi.org/10.1038/s41467-020-18922-7", "Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1\u20132), 213\u2013241. https://doi.org/10.1007/s10584-011-0156-z", "Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747\u2013756. https://doi.org/10.1038/nature08823", "Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715\u20132718. https://doi.org/10.1029/98gl01908", "Strassmann, K. M. and Joos, F. (2018). The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle\u2013climate simulations, Geosci. Model Dev., 11, 1887\u20131908, https://doi.org/10.5194/gmd-11-1887-2018", "Thomas, M. A., and Lin, T. (2018). A dual model for emulation of thermosteric and dynamic sea-level change. Climatic Change, 148(1\u20132), 311\u2013324. https://doi.org/10.1007/s10584-018-2198-y"]} Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press. Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community. We acknowledge the Carbon Monitor initiative (Liu et al., 2020) for providing the COVID-19 CO2 sectoral emission data used to construct the proposed TEPs. In addition, we acknowledge the developers of the BernSCM (Strassmann and Joos, 2018) that was utilized in this study to relate TEP CO2 emissions to their respective CO2 atmospheric concentrations. Furthermore, we thank the Texas Tech University McNair Scholars Program and the Multi-Hazard Sustainability (HazSus) research group for guidance and support throughout the course of this study. Analyses presented herein were performed using the RedRaider computing cluster at Texas Tech University. We thank the team at the High Performance Computing Center (HPCC) for their generous support. In addition, the equipment support from the Vice President for Research & Innovation for T.L.'s HazSus Research Group is gratefully acknowledged.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility87
    visibilityviews87
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Moore, Keith M.; Dillaha, Theo A. III;

    The objective of this presentation is to promote the development of a book to help development agents in developing (and developed) countries to better understand what is involved in the management of complex adaptive systems. The problem relates to linked rural poverty and environmental sustainability, though this can be solved through adaptive management for small holder innovation by providing development agents with knowledge and understanding to assist small holder innovation for adaptive management of complex adaptive systems (CAS). The objective is to encourage policy makers and donors to support local innovation and adaptive management. ME (Management Entity)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Presentation . 2006
    Data sources: VTechWorks
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Presentation . 2006
      Data sources: VTechWorks
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
734 Research products
  • Authors: Craig Kennedy; John Glenn; Natalie La Balme; Pierangelo Isernia; +2 Authors

    The aim of this study was to identify the attitudes of the public in the United States and in 12 European countries towards foreign policy issues and transatlantic issues. The survey concentrated on issues such as: United States and European Union (EU) leadership and relations, favorability towards certain countries, institutions and people, security, cooperation and the perception of threat including issues of concern with Afghanistan, Iran, and Russia, energy dependence, economic downturn, and global warming, Turkey and Turkish accession to the EU, promotion of democracy in other countries, and the importance of economic versus military power. Several questions asked of respondents pertained to voting and politics including whether they discussed political matters with friends and whether they attempted to persuade others close to them to share their views on politics which they held strong opinions about, vote intention, their assessment of the current United States President and upcoming presidential election, political party attachment, and left-right political self-placement. Demographic and other background information includes age, gender, race, ethnicity, religious affiliation and participation, age when stopped full-time education and stage at which full-time education completed, occupation, number of people aged 18 years and older living in the household, type of locality, region of residence, prior travel to the United States or Europe, and language of interview. computer-assisted personal interview (CAPI); computer-assisted telephone interview (CATI); paper and pencil interview (PAPI)The original data collection was carried out by TNS, Fait et Opinion -- Brussels on request of the German Marshall Fund of the United States.The codebook and setup files for this collection contain characters with diacritical marks used in many European languages.A split ballot was used for one or more questions in this survey. The variable SPLIT defines the separate groups.For data collection, the computer-assisted face-to-face interview was used in Poland, the paper and pencil interview was used in Bulgaria, Romania, Slovakia and Turkey, and the computer-assisted telephone interview was used in all other countries.Additional information on the Transatlantic Trends Survey is provided on the Transatlantic Trends Web site. (1) Multistage random sampling was implemented in the countries using face-to-face interviewing. Sampling points were selected according to region, and then random routes were conducted within these sampling points. Four callbacks were used for each address. The birthday rule was used to randomly select respondents within a household. (2) Random Digit Dialing was implemented in the countries using telephone interviewing. Eight callbacks were used for each telephone number. The birthday rule was used to randomly select respondents within a household. The adult population aged 18 years and over in 13 countries: Bulgaria, France, Germany, Italy, the Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Turkey, the United Kingdom, and the United States. Smallest Geographic Unit: country Response Rates: The total response rate for all countries surveyed is 23 percent. Please refer to the "Technical Note" in the ICPSR codebook for additional information about response rate. Please refer to the "Technical Note" in the ICPSR codebook for further information about weighting. Datasets: DS1: Transatlantic Trends Survey, 2008

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: World Bank Group;

    The country’s unique philosophy is expressed by Bhutan’s Gross National Happiness (GNH) as the guiding principle of development. Bhutan is at a crossroads: It can maintain the current pattern of development—with rising inequality—or develop a vibrant private sector to generate jobs and diversify the economy, building resilience to future external shocks. The overarching priority of this Country Partnership Framework (CPF) is job creation. This CPF presents an integrated framework of WBG support to help Bhutan achieve inclusive and sustainable development through private sector–led job creation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Knowledge Repos...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Open Knowledge Repository
    Other ORP type . 2021
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Knowledge Repos...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Open Knowledge Repository
      Other ORP type . 2021
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Polasky, Stephen; Nelson, Erik; Tilman, David; Gerber, James; +5 Authors

    We analyze past and anticipated future trends in crop yields, per capita consumption, and population to estimate agricultural land requirements globally by 2050 and 2100. Assuming “business as usual,” higher-income countries are expected to show little or no net growth in cropland by the end of the century, even in the face of moderate climate change. In contrast, in lower-income countries, we project that land requirements will grow dramatically, and climate change will likely double this expansion. Although economic growth is often considered to work in opposition to conservation, accelerating economic development in lower-income countries, which would help alleviate poverty and increase standards of living, would also greatly reduce potential cropland expansion in lower-income countries, even with climate change, owing to slower population growth and improved crop yields that more than offset increased per capita consumption. Combining economic development in low-income countries with reduced consumption in high-income countries could dramatically shrink global cropland requirements by the year 2100 even with moderate climate change. Such a remarkable reduction in cropland area would have enormous benefits for both biodiversity and global climate change.  All of the data files are analyzed using R.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; +5 Authors

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
  • Authors: Mwai, Eva; Dr. Aloys O. Ojore; Dr. Tobias Nyumba;

    Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results. Study PopulationThe target population of the study were women aged 18 years to 69 years from households in Mwea East sub County that have experienced climate change events. As shown in table 3.1 below, the total population of female in Mwea East sub County in this age category was estimated at 38,734 (Kenya National Bureau of Statistics (KNBS)Volume III, table 2.5, (2019).Sample SizeA sample size of 449 respondents was determined as adequate for statistical analysis for the study using an online sample size calculator (calculator.net, 2021). 95% confidence level and 4.6% margin of error was used to calculate the sample size of 449 respondents determining the level of accuracy of the sample from the total estimated population of 38,734 women aged 18-69 years in Mwea East sub County.Data CollectionThe administration of the questionnaire was done by the Principal Investigator (PI) along with the KIIs, which were conducted after the questionnaire had been administered. The questionnaires were administered by 11 data collection assistants who were trained by the researcher. One of the 11 data collectors was the team leader. The researcher collected data in 5 of the households to demonstrate and practice the data collection process. Data AnalysisQuantitative and qualitative data were analyzed and triangulated to validate the findings. The quantitative data was analyzed using a combination of the IBM SPSS techniques including frequencies, cross-tabulations, bivariate statistics, means, correlations and descriptive ratio statistics. Qualitative data from both respondents and key informants’ interviews were documented using filed notes and thematically analyzed. The analysis from both sets of data was then merged to present the results.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Drewer, J.; White, S.; Sionita, R.; Pujianto, P.;

    This dataset contains terrestrial fluxes of nitrous oxide (N2O), methane (CH4) and ecosystem respiration (carbon dioxide (CO2)) calculated from static chamber measurements in riparian buffers of oil palm plantations on mineral soil, in Riau, Sumatra, Indonesia. Measurements were made monthly, from January 2019 until September 2021, with a break from April 2019 to October 2019 to allow for felling and replanting, and another break from January 2021 to June 2021 due to Covid-19 restrictions. To help to reduce the environmental impact of oil palm plantations, riparian buffers are now required by regulations in many Southeast Asian countries. The experiments were conducted to investigate the impact of greenhouse gas emissions from the riparian buffers. Research was funded through NERC grant NE/R000131/1 Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) Greenhouse gas concentrations were measured using static chambers, enclosed for 45 minutes. Multiple regressions (including linear and hierarchical multiple regression) were fitted to calculate the best fit flux, using the RCflux R package, written by Dr Peter Levy (UKCEH).

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;

    We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.4228/zal...
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.4228/zal...
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
  • Authors: Liu, Maggie; Shamdasani, Yogita; Taraz, Vis;

    How do rising temperatures affect long-term labor reallocation in developing economies? In this paper, we examine how increases in temperature impact structural transformation and urbanization within Indian districts between 1951 and 2011. We find that rising temperatures are associated with lower shares of workers in non-agriculture, with effects intensifying over a longer time frame. Supporting evidence suggests that local demand effects play an important role: declining agricultural productivity under higher temperatures reduces the demand for non-agricultural goods and services, which subsequently lowers non-agricultural labor demand. Our results illustrate that rising temperatures limit sectoral and rural-urban mobility for isolated households. Districts in India .

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    {"references": ["Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Br\u00e9on, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K. & Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11, 5172 (2020). https://doi.org/10.1038/s41467-020-18922-7", "Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1\u20132), 213\u2013241. https://doi.org/10.1007/s10584-011-0156-z", "Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747\u2013756. https://doi.org/10.1038/nature08823", "Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715\u20132718. https://doi.org/10.1029/98gl01908", "Strassmann, K. M. and Joos, F. (2018). The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle\u2013climate simulations, Geosci. Model Dev., 11, 1887\u20131908, https://doi.org/10.5194/gmd-11-1887-2018", "Thomas, M. A., and Lin, T. (2018). A dual model for emulation of thermosteric and dynamic sea-level change. Climatic Change, 148(1\u20132), 311\u2013324. https://doi.org/10.1007/s10584-018-2198-y"]} Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press. Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community. We acknowledge the Carbon Monitor initiative (Liu et al., 2020) for providing the COVID-19 CO2 sectoral emission data used to construct the proposed TEPs. In addition, we acknowledge the developers of the BernSCM (Strassmann and Joos, 2018) that was utilized in this study to relate TEP CO2 emissions to their respective CO2 atmospheric concentrations. Furthermore, we thank the Texas Tech University McNair Scholars Program and the Multi-Hazard Sustainability (HazSus) research group for guidance and support throughout the course of this study. Analyses presented herein were performed using the RedRaider computing cluster at Texas Tech University. We thank the team at the High Performance Computing Center (HPCC) for their generous support. In addition, the equipment support from the Vice President for Research & Innovation for T.L.'s HazSus Research Group is gratefully acknowledged.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility87
    visibilityviews87
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Moore, Keith M.; Dillaha, Theo A. III;

    The objective of this presentation is to promote the development of a book to help development agents in developing (and developed) countries to better understand what is involved in the management of complex adaptive systems. The problem relates to linked rural poverty and environmental sustainability, though this can be solved through adaptive management for small holder innovation by providing development agents with knowledge and understanding to assist small holder innovation for adaptive management of complex adaptive systems (CAS). The objective is to encourage policy makers and donors to support local innovation and adaptive management. ME (Management Entity)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Presentation . 2006
    Data sources: VTechWorks
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Presentation . 2006
      Data sources: VTechWorks