- home
- Search
- Energy Research
- 2. Zero hunger
- CN
- US
- GB
- IN
- Sustainability
- Energy Research
- 2. Zero hunger
- CN
- US
- GB
- IN
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors:Zoe M. Harris;
Zoe M. Harris
Zoe M. Harris in OpenAIREYiannis Kountouris;
Yiannis Kountouris
Yiannis Kountouris in OpenAIREdoi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG doi: 10.3390/su10114057
To effectively address the sustainability crises our planet faces, decision-makers at different levels of government worldwide will have to get a handle on three key challenges: learning from Global North and South initiatives in tandem, taking stock of social innovations alongside technological fixes, and nurturing grassroots sustainable development initiatives next to, or in place of, top-down corporate and government interventions. Current scientific literature and grant-making institutions have often reinforced the compartmentalized fashion in which we learn and draw policy lessons from North/South, social/technical, and bottom-up/top-down sustainability initiatives, including local food system innovations. The strategic levers for global sustainable development lying in-between are thus left out. This paper uses exploratory, multiple case study analysis to address this omission. By concurrently drawing lessons from grassroots innovations in Brazil, New York, and Senegal—three profoundly different socioeconomic and geographic contexts—we identify common pressure points that have enabled local communities to drive system-wide transformations toward climate adaptation, resilience, and sustainability in the agri-food system. The findings of this paper would be of value to scholars, government officials, and community groups engaged in agri-food systems sustainability and interested in the processes of change that have allowed budding innovations to stabilize and scale up.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwedenPublisher:MDPI AG Authors: Rabia Khalid; Xiao Xia Zhang; Rifat Hayat;Mukhtar Ahmed;
Mukhtar Ahmed
Mukhtar Ahmed in OpenAIREdoi: 10.3390/su12156259
The phenotypic and genotypic characterization of eight rhizobial isolates obtained from Arachis hypogaea nodules grown under stress environment was performed. Isolates were screened for their ability to tolerate different abiotic stresses (high temperature (60° C), salinity (1–5% (w/v) NaCl), and pH (1–12). The genomic analysis of 16S rRNA and housekeeping genes (atpD, recA, and glnII) demonstrated that native groundnut rhizobia from these stress soils are representatives of fast growers and phylogenetically related to Rhizobium sp. The phenotypic characterization (generation time, carbon source utilization) also revealed the isolates as fast-growing rhizobia. All the isolates can tolerate NaCl up to 3% and were able to grow between 20 and 37 °C with a pH between 5 to 10, indicating that the isolates were alkali and salt-tolerant. The tested isolates effectively utilize mono and disaccharides as carbon source. Out of eight, three rhizobial isolates (BN-20, BN-23, and BN-50) were able to nodulate their host plant, exhibiting their potential to be used as native groundnut rhizobial inoculum. The plant growth promoting characterization of all isolates revealed their effectiveness to solubilize inorganic phosphate (56–290 µg mL−1), synthesize indole acetic acid (IAA) (24–71 µg mL−1), and amplification of nitrogen fixing nifH gene, exploring their ability to be used as groundnut biofertilizer to enhance yield and N2-fixation for the resource poor farmers of rainfed Pothwar region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Xiaolan Wang;Li Peng;
Li Peng
Li Peng in OpenAIREDingde Xu;
Xuxi Wang;Dingde Xu
Dingde Xu in OpenAIREdoi: 10.3390/su11082193
Exploring the sensitivity of rural households’ livelihood strategies to livelihood capital is of great significance for improving rural households’ livelihood levels. This paper selects 23 livelihood capital measurement indicators and conducts an in-depth survey of rural households. In addition, the entropy method and a weighted comprehensive model are used to explore the basic characteristics of rural households’ livelihood capital in the upper reaches of the Min River, China, in 2017. Furthermore, econometric models are used to analyze the sensitivity of rural households’ livelihood strategies to livelihood capital. As indicated from the research, the livelihood capital levels of different types of rural households in the study area are not equivalent. The types of rural households with different livelihood strategies can be ordered in terms of quantity as follows: non-agricultural type > non-agricultural dominant type > agricultural dominant type > pure agricultural type. Livelihood strategies have different sensitivities to different livelihood capital measurement indicators. Among these indicators, cash income, the number of relatives and friends available for financial assistance, and the number of civil servants have positive effects on the livelihood strategy selection of non-agricultural dominant rural households and non-agricultural rural households. However, the average age of laborers, area of cultivated land and gardens, number of livestock and poultry, and present value of production tools have negative effects. These evaluation results can provide a scientific decision-making basis for the formulation of poverty alleviation policies by relevant government departments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11082193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11082193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Kanwalpreet Kour;
Kanwalpreet Kour
Kanwalpreet Kour in OpenAIREDeepali Gupta;
Deepali Gupta
Deepali Gupta in OpenAIREKamali Gupta;
Kamali Gupta
Kamali Gupta in OpenAIRESapna Juneja;
+3 AuthorsSapna Juneja
Sapna Juneja in OpenAIREKanwalpreet Kour;
Kanwalpreet Kour
Kanwalpreet Kour in OpenAIREDeepali Gupta;
Deepali Gupta
Deepali Gupta in OpenAIREKamali Gupta;
Kamali Gupta
Kamali Gupta in OpenAIRESapna Juneja;
Manjit Kaur; Amal H. Alharbi;Sapna Juneja
Sapna Juneja in OpenAIREHeung-No Lee;
Heung-No Lee
Heung-No Lee in OpenAIREdoi: 10.3390/su14095607
Saffron, also known as “the golden spice”, is one of the most expensive crops in the world. The expensiveness of saffron comes from its rarity, the tedious harvesting process, and its nutritional and medicinal value. Different countries of the world are making great economic growth due to saffron export. In India, it is cultivated mostly in regions of Kashmir owing to its climate and soil composition. The economic value generated by saffron export can be increased manyfold by studying the agronomical factors of saffron and developing a model for artificial cultivation of saffron in any season and anywhere by monitoring and controlling the conditions of its growth. This paper presents a detailed study of all the agronomical variables of saffron that have a direct or indirect impact on its growth. It was found that, out of all the agronomical variables, the important ones having an impact on growth include corm size, temperature, water availability, and minerals. It was also observed that the use of IoT for the sustainable cultivation of saffron in smart cities has been discussed only by very few research papers. An IoT-based framework has also been proposed, which can be used for controlling and monitoring all the important growth parameters of saffron for its cultivation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:null Neha;
Gajender Yadav; Rajender Kumar Yadav;null Neha
null Neha in OpenAIREAshwani Kumar;
+4 AuthorsAshwani Kumar
Ashwani Kumar in OpenAIREnull Neha;
Gajender Yadav; Rajender Kumar Yadav;null Neha
null Neha in OpenAIREAshwani Kumar;
Ashwani Kumar
Ashwani Kumar in OpenAIREAravind Kumar Rai;
Junya Onishi; Keisuke Omori; Parbodh Chander Sharma;Aravind Kumar Rai
Aravind Kumar Rai in OpenAIREdoi: 10.3390/su14074146
Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. The present study evaluated the effectiveness of cut-soiler-constructed rice residue-filled preferential shallow subsurface drainage (PSSD) to improve the drainage function and its effect on the yield, quality and plant–water relations of mustard over 2019–2021. Cut-soiler-simulated drains were made in a semi-controlled lysimeter (2 × 2 × 3; L*W*H m) as the main plot treatment in a double replicated split–split experiment with two soil types (subplot) and three irrigation water salinities (4, 8 and 12 dS m−1) as the sub-sub-plot treatment. The drainage volume of variable salinity (EC), dependent on the total water input, was substantially higher in the rainy season (April to October), i.e., 16.6, 7.76 and 12.0% during 2018, 2019 and 2020, with 1.7, 0.32 and 0.77 kg salt removal per lysimeter, compared to the post-rainy season. The mustard seed, straw and biological yields were improved by 31.4, 14.41 and 18.08%, respectively, due to a positive effect on plant–water relations. The mustard seeds produced in the cut-soiler-treated plots recorded higher oil, crude fiber and protein contents and a lower erucic acid content. The increase in salt load, by higher-salinity irrigation water, was also efficiently managed by using cut-soiler PSSD. It was found that the saline irrigation water up to 12.0 dS m−1 can be used under such PSSD without any extra salt loading. The present study showed the potential of cut-soiler PSSD in root zone salinity management by improving drainage in salt-affected arid regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Minghao Yang; Yican Zhang; Xiaodi Wang; Zhiqiang Wang; Peng Li; Xiangbin Shi; Xiaolong Wang; Baoliang Wang; Yumei Li; Yuquan Ma; Fengzhi Liu; Haibo Wang;doi: 10.3390/su151411211
Composting is an environment-friendly and sustainable way to transform grape branches (GBs) into a useful product. Different parameters can differently affect fertilizer quality. Here, the compost product nutrient content was evaluated using an L9 orthogonal array (parameters, nitrogen source: chicken manure, sheep manure, urea; stirring temperature: 50, 60, 70 °C; initial pH: 6, 7, 8; conditioning agent: calcium superphosphate, zeolite, and copper sulfate). Among the treatments, the T3 (chicken manure, 70 °C, pH = 8, copper sulfate), T2 (chicken manure, 60 °C, pH = 7, zeolite), and T9 (urea, 70 °C, pH = 7, calcium superphosphate) had high gray relational grades (0.7424, 0.7132, 0.7110, respectively). The nitrogen source type (R = 0.1140) had the greatest influence on the nutrient content of the final product, followed by the stirring temperature (R = 0.1104), the conditioning agent (R = 0.0522), and the initial pH (R = 0.0408). Finally, the best nitrogen source of the grape branch compost was chicken manure, the best stirring temperature was 70 °C, the best initial pH was 7, and the best conditioning agent was zeolite. An experimental verification showed that the weighted correlation degree of the optimal treatment predicted by the orthogonal experiment increased by 3.63%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151411211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151411211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors:Taitiya Kenneth Yuguda;
Yi Li;Taitiya Kenneth Yuguda
Taitiya Kenneth Yuguda in OpenAIREBobby Shekarau Luka;
Goziya William Dzarma;Bobby Shekarau Luka
Bobby Shekarau Luka in OpenAIREdoi: 10.3390/su122410380
Greenhouse gas (GHG) emissions from reservoirs are responsible for at most 2% of the overall warming effects of human activities. This study aimed at incorporating the GHG emissions of a reservoir (with irrigation/sugar production as its primary purpose), into the carbon footprint of sugar produced from irrigated sugarcane. This study adopts a life-cycle assessment (LCA) approach and encompasses the cradle-to-gate aspect of the international organization of standardization ISO 14040 guidelines. Results show that total carbon footprint of refined sugar could be as high as 5.71 kg CO2-eq/kg sugar, over its entire life cycle, depending on the priority of purposes allocated to a reservoir and sugarcane productivity. Findings also reveal that the dammed river contributes the most to GHG emissions 5.04 kg CO2-eq/kg sugar, followed by the agricultural stage 0.430 kg CO2-eq/kg sugar, the sugar factory 0.227 kg CO2-eq/kg sugar, and lastly the transportation stage 0.065 kg CO2-eq/kg sugar. The sensitivity analysis shows that carbon footprint CF of sugar production is largely influenced by the rate of biomass decomposition in the impounded reservoir over time, followed by the reservoir drawdown due to seasonal climatic fluctuations. Significant amounts of GHG emissions are correlated with the impoundment of reservoirs for water resource development projects, which may account for up to 80% of total GHG emissions to the reservoir’s primary purpose. Sugar production expansion, coupled with allocating more functions to a reservoir, significantly influences the CF of sugar per service purpose. This study is an indicator for policymakers to comprehend and make plans for the growing tradeoffs amongst key functions of reservoirs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Xuehong Bai;Huimin Yan;
Huimin Yan
Huimin Yan in OpenAIRELihu Pan;
Lihu Pan
Lihu Pan in OpenAIREHe Huang;
He Huang
He Huang in OpenAIREdoi: 10.3390/su71114802
Farmland is the most basic material condition for guaranteeing rural livelihoods and national food security, and exploring management strategies that take both stable rural livelihoods and sustainable farmland use into account has vital significance in theory and practice. Farmland is a complex and self-adaptive system that couples human and natural systems, and natural and social factors that are related to its changing process need to be considered when modeling farmland changing processes. This paper uses Qianjingou Town in the Inner Mongolian farming–pastoral zone as a study area. From the perspective of the relationship between household livelihood and farmland use, this study establishes the process mechanism of farmland use change based on questionnaire data, and constructs a multi-agent simulation model of farmland use change using the Eclipse and Repast toolbox. Through simulating the relationship between natural factors (including geographical location) and household behavior, this paper systematically simulates household farmland abandonment and rent behaviors, and accurately describes the dynamic interactions between household livelihoods and the factors related to farmland use change. These factors include natural factors (net primary productivity, road accessibility, slope and relief amplitude) and social factors (household family structures, economic development and government policies). Ultimately, this study scientifically predicts the future farmland use change trend in the next 30 years. The simulation results show that the number of abandoned and sublet farmland plots has a gradually increasing trend, and the number of non-farming households and pure-outworking households has a remarkable increasing trend, whereas the number of part-farming households and pure-farming households has a decreasing trend. Household livelihood sustainability in the study area is confronted with increasing pressure, and household non-farm employment has an increasing trend, while regional appropriate-scale agricultural management is maintained. The research results establish the theoretical foundation and a basic method for developing sustainable farmland use management that can meet the willingness of households and guarantee grain and ecological security.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su71114802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su71114802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Huijuan Zhang; Wenkai Liu; Qiuxia Zhang; Xiaodong Huang;doi: 10.3390/su14137897
Soil nitrogen is very important for crop growth and development. However, the factors affecting the three-dimensional spatial distribution of soil total nitrogen (TN), particularly in coal mining subsidence areas, are unclear. In this study, Markov geostatistics was used to analyse the three-dimensional spatial distribution characteristics and influential factors of TN by examining 180 soil samples from the Zhaogu mine in China. The results showed that the TN content was significantly different at different soil depths (0–20, 20–40, 40–60 cm) and decreased with increasing soil depth. The variation coefficient of the TN content decreased gradually from top to bottom, ranging from 18.18 to 25.62%. In addition, the TN content was greatly affected by mining subsidence, rainfall, irrigation, fertilization and management mode. The factors that influenced the TN content also varied across different slope positions. The TN content of the upslope was the highest, and the TN content of the middle slope was the lowest. These results can provide research ideas and technical countermeasures for ecological environment improvement and sustainable land development in coal mining subsidence areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu