- home
- Search
- Energy Research
- 7. Clean energy
- US
- IN
- DK
- Energy Research
- 7. Clean energy
- US
- IN
- DK
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Eun Ha Choi; Weontae Lee; Suresh Chand; Pankaj Attri; Gi Chung Kwon; In Tae Kim; Jitender Gaur; Seung-Hyun Lee; Vishal Bharti; Young Sun Kim;doi: 10.1039/c4cp03323j
pmid: 25382728
For the first time, we here propose a green methodology to modify a low bandgap polymer for highly efficient solar cells using atmospheric pressure plasma jet or soft plasma operating on different feeding gases (air, Ar and N2). The physical properties of the modified polymer were investigated using conductivity measurements, UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammograms, atomic force microscopy, cathodoluminescence and confocal Raman spectroscopy. Further, we examined the variation of the work function of the polymer before and after plasma treatment using a γ-focused ion beam. Additionally, photovoltaic cells based on the plasma-modified polymer having ITO/PEDOT:PSS/PHVTT (with or without plasma modification):PC71BM/LiF/Al configuration were fabricated and then characterized. We found that the power conversion efficiency (PCE) of the plasma-modified polymer increased dramatically as compared to the control polymer (without plasma treatment). PCE of the control polymer was found to be 4.11%, while after air, Ar and N2 gas plasma treatment the polymer showed PCEs of 4.85%, 4.87% and 5.14% respectively. Thus, plasma treatment not only alters the surface properties, but also modifies the bulk properties (changes in HOMO and LUMO bandgap level). Hence, this work provides new dimensions to explore more about plasma and polymer chemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4cp03323j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4cp03323j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1996 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Chess, K.; Yao, S.C.; Russell, A.G.;doi: 10.2172/481499
This report describes experimental studies performed at Carnegie Mellon University to study the parameters that affect the performance of plasma-assisted ammonia radical injection for NO{sub x} control from stationary combustion sources. First, the NO{sub x} reduction potential of hot ammonia injection was studied to determine whether the use of the plasma for radical generation was key to the high NO{sub x} reduction potential of the plasma deNO{sub x} process. It was found that while some of the NO{sub x} reduction in the plasma deNO{sub x} demonstration experiments could be attributed to the enhanced thermal breakdown of NH{sub 3} into NO{sub x} reducing radicals, the effect of using the plasma accounted for 15--35% absolute additional NO{sub x} reduction beyond any thermal benefit. This benefit of using the plasma increases with increased excess air and decreased flue gas temperature. With the benefit of using the plasma verified on the larger scale of a demonstration experiment, two additional experiments were performed to study the parameters that affect plasma deNO{sub x} performance on the local level. The opposed flow experiment failed to produce significant NO{sub x} reduction, although it did highlight some key aspects of plasma performance with ammonia injection. The reverse injection experiment successfully demonstrated the effects of NO-stream temperature, plasma power, and ammonia flow rate on plasma deNO{sub x} performance. Finally, a preliminary study of the chemical kinetics of the plasma deNO{sub x} system was performed. This study highlighted the importance of effective plasma temperature and the residence time of the reagent at that temperature to efficient radical generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/481499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/481499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:Elsevier BV Authors: Yu-Pei Ke; Stanley A. Mumma;Abstract A criterion, based on optimization principles, for determining the SAT setpoint in VAV systems is presented. It is generally accepted that conventional SAT reset controls (SATRC), bounded by either space humidity or ductwork size, will save cooling and/or heating energy. How-ever, the ventilation consequences and penalty resulting from increased fan power have generally been overlooked. Ventilation is impacted since changes in the SAT setpoint change the primary airflow rate and the operation of economizer cycles, i.e. the distribution of fresh outdoor air (OA). These changes may result in extra energy demand and ventilation inefficiency if the reset criterion is not appropriate. This optimization concept simultaneously reduces energy consumption and meets ventilation requirements. Simulation results illustrate that the use of the optimized SATRC saves more energy than a conventional one.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(96)00154-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(96)00154-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Surya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; +2 AuthorsSurya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; Fahad M. Alqahtani; Faisal M. Alessa;doi: 10.3390/su151612220
The growing population and increasing urbanization have led to a surge in domestic wastewater generation, posing significant challenges for effective and sustainable treatment. The present study demonstrates a novel and sustainable approach for the onsite treatment of domestic wastewater using an integrated settler-based biofilm reactor (ISBR) with efficient biogas generation. The ISBR provides an optimized environment for the growth of biofilm, facilitating the removal of organic pollutants and pathogens. Moreover, the ISBR enables the recovery of a valuable resource in the form of biogas, thus enhancing the overall utility of the treatment process. The performance of the ISBR was comprehensively evaluated at laboratory scale through treating the actual domestic wastewater generated from the hostel of Manipal University Jaipur. The ISBR system was operated under an ambient environment at a hydraulic retention time (HRT) of 24 h. The results demonstrated remarkable efficiency in terms of chemical oxygen demand (COD), total suspended solids (TSS), and coliforms removal, with average removal efficiency being more than 90%. According to the COD mass balance analysis, 48.2% of the influent COD was recovered as bioenergy. The chromatogram revealed a high percentage of methane gas in the collected biogas sample. The field emission scanning electron microscope (FESEM) analysis of the accumulated sludge in the ISBR system depicted the morphology of methanogenic bacteria. Both the experimental and theoretical results confirmed the feasibility and sustainability of the ISBR system at the onsite level.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:IOP Publishing Authors: D C Agrawal; V J Menon;A thermoelectric generator with zero internal resistance, vanishing heat leakage and negligible production of Thomson heat is considered. It is shown that such a generator behaves as an ideal Carnot engine or an endoreversible Carnot engine depending upon whether the heat transfer mechanism at the junctions is reversible or a finite rate. Furthermore, the optimized power of the generator is found to be greater than that of the endoreversible Carnot engine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0022-3727/30/3/007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0022-3727/30/3/007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Said Al-Hallaj; J.R. Selman;Abstract A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be “scaled-up safely”, i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with “active” cooling systems requiring air or liquid circulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(02)00196-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu240 citations 240 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(02)00196-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 AuthorsKamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; Kalvinder Singh;handle: 10072/429448
A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors: Shraddha Maitra; Bruce Dien; Stephen P. Long; Vijay Singh;doi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Springer Science and Business Media LLC Authors: Janine Bloomfield; Holly Pearson;Activities involving land use, land-use change,forestry, and agriculture (LUCF) can help reducegreenhouse gas (GHG) concentrations in the atmosphereby increasing biotic carbon storage, by decreasing GHGemissions, and by producing biomass as a substitutefor fossil fuels. Potential activities includereducing rates of deforestation, increasing landdevoted to forest plantations, regenerating secondaryforest, agroforestry, improving the management offorests and agricultural areas; and producing energycrops.Policymakers debating the inclusion of a variety ofLUCF activities in the Clean Development Mechanism(CDM) of the Kyoto Protocol need to consider themagnitude of the carbon contribution these activitiescould make. Existing estimates of the cumulative GHGoffset potential of LUCF activities often take aglobal or regional approach. In contrast, land-usedecisions are usually made at the local level anddepend on many factors including productive capacityof the land, financial considerations of thelandowner, and environmental concerns. Estimates ofGHG offset potential made at a local, or at mostcountry, level that incorporate these factors may belower, as well as more useful for policy analyses,than global or large regional estimates. Whilecountry-level estimates exist for forestry activities,similar estimates utilizing local information need tobe generated for agricultural activities and biofuels,as well as for the cumulative potential of all LUCFactivities in a particular location.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2008 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Rohatgi, Ajeet; Yelundur, Vijay; Ebong, Abasifreke; Kim, Dong Seop;doi: 10.2172/967921
The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/967921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/967921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Eun Ha Choi; Weontae Lee; Suresh Chand; Pankaj Attri; Gi Chung Kwon; In Tae Kim; Jitender Gaur; Seung-Hyun Lee; Vishal Bharti; Young Sun Kim;doi: 10.1039/c4cp03323j
pmid: 25382728
For the first time, we here propose a green methodology to modify a low bandgap polymer for highly efficient solar cells using atmospheric pressure plasma jet or soft plasma operating on different feeding gases (air, Ar and N2). The physical properties of the modified polymer were investigated using conductivity measurements, UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammograms, atomic force microscopy, cathodoluminescence and confocal Raman spectroscopy. Further, we examined the variation of the work function of the polymer before and after plasma treatment using a γ-focused ion beam. Additionally, photovoltaic cells based on the plasma-modified polymer having ITO/PEDOT:PSS/PHVTT (with or without plasma modification):PC71BM/LiF/Al configuration were fabricated and then characterized. We found that the power conversion efficiency (PCE) of the plasma-modified polymer increased dramatically as compared to the control polymer (without plasma treatment). PCE of the control polymer was found to be 4.11%, while after air, Ar and N2 gas plasma treatment the polymer showed PCEs of 4.85%, 4.87% and 5.14% respectively. Thus, plasma treatment not only alters the surface properties, but also modifies the bulk properties (changes in HOMO and LUMO bandgap level). Hence, this work provides new dimensions to explore more about plasma and polymer chemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4cp03323j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4cp03323j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1996 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Chess, K.; Yao, S.C.; Russell, A.G.;doi: 10.2172/481499
This report describes experimental studies performed at Carnegie Mellon University to study the parameters that affect the performance of plasma-assisted ammonia radical injection for NO{sub x} control from stationary combustion sources. First, the NO{sub x} reduction potential of hot ammonia injection was studied to determine whether the use of the plasma for radical generation was key to the high NO{sub x} reduction potential of the plasma deNO{sub x} process. It was found that while some of the NO{sub x} reduction in the plasma deNO{sub x} demonstration experiments could be attributed to the enhanced thermal breakdown of NH{sub 3} into NO{sub x} reducing radicals, the effect of using the plasma accounted for 15--35% absolute additional NO{sub x} reduction beyond any thermal benefit. This benefit of using the plasma increases with increased excess air and decreased flue gas temperature. With the benefit of using the plasma verified on the larger scale of a demonstration experiment, two additional experiments were performed to study the parameters that affect plasma deNO{sub x} performance on the local level. The opposed flow experiment failed to produce significant NO{sub x} reduction, although it did highlight some key aspects of plasma performance with ammonia injection. The reverse injection experiment successfully demonstrated the effects of NO-stream temperature, plasma power, and ammonia flow rate on plasma deNO{sub x} performance. Finally, a preliminary study of the chemical kinetics of the plasma deNO{sub x} system was performed. This study highlighted the importance of effective plasma temperature and the residence time of the reagent at that temperature to efficient radical generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/481499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/481499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:Elsevier BV Authors: Yu-Pei Ke; Stanley A. Mumma;Abstract A criterion, based on optimization principles, for determining the SAT setpoint in VAV systems is presented. It is generally accepted that conventional SAT reset controls (SATRC), bounded by either space humidity or ductwork size, will save cooling and/or heating energy. How-ever, the ventilation consequences and penalty resulting from increased fan power have generally been overlooked. Ventilation is impacted since changes in the SAT setpoint change the primary airflow rate and the operation of economizer cycles, i.e. the distribution of fresh outdoor air (OA). These changes may result in extra energy demand and ventilation inefficiency if the reset criterion is not appropriate. This optimization concept simultaneously reduces energy consumption and meets ventilation requirements. Simulation results illustrate that the use of the optimized SATRC saves more energy than a conventional one.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(96)00154-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(96)00154-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Surya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; +2 AuthorsSurya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; Fahad M. Alqahtani; Faisal M. Alessa;doi: 10.3390/su151612220
The growing population and increasing urbanization have led to a surge in domestic wastewater generation, posing significant challenges for effective and sustainable treatment. The present study demonstrates a novel and sustainable approach for the onsite treatment of domestic wastewater using an integrated settler-based biofilm reactor (ISBR) with efficient biogas generation. The ISBR provides an optimized environment for the growth of biofilm, facilitating the removal of organic pollutants and pathogens. Moreover, the ISBR enables the recovery of a valuable resource in the form of biogas, thus enhancing the overall utility of the treatment process. The performance of the ISBR was comprehensively evaluated at laboratory scale through treating the actual domestic wastewater generated from the hostel of Manipal University Jaipur. The ISBR system was operated under an ambient environment at a hydraulic retention time (HRT) of 24 h. The results demonstrated remarkable efficiency in terms of chemical oxygen demand (COD), total suspended solids (TSS), and coliforms removal, with average removal efficiency being more than 90%. According to the COD mass balance analysis, 48.2% of the influent COD was recovered as bioenergy. The chromatogram revealed a high percentage of methane gas in the collected biogas sample. The field emission scanning electron microscope (FESEM) analysis of the accumulated sludge in the ISBR system depicted the morphology of methanogenic bacteria. Both the experimental and theoretical results confirmed the feasibility and sustainability of the ISBR system at the onsite level.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:IOP Publishing Authors: D C Agrawal; V J Menon;A thermoelectric generator with zero internal resistance, vanishing heat leakage and negligible production of Thomson heat is considered. It is shown that such a generator behaves as an ideal Carnot engine or an endoreversible Carnot engine depending upon whether the heat transfer mechanism at the junctions is reversible or a finite rate. Furthermore, the optimized power of the generator is found to be greater than that of the endoreversible Carnot engine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0022-3727/30/3/007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0022-3727/30/3/007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Said Al-Hallaj; J.R. Selman;Abstract A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be “scaled-up safely”, i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with “active” cooling systems requiring air or liquid circulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(02)00196-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu240 citations 240 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(02)00196-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 AuthorsKamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; Kalvinder Singh;handle: 10072/429448
A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors: Shraddha Maitra; Bruce Dien; Stephen P. Long; Vijay Singh;doi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Springer Science and Business Media LLC Authors: Janine Bloomfield; Holly Pearson;Activities involving land use, land-use change,forestry, and agriculture (LUCF) can help reducegreenhouse gas (GHG) concentrations in the atmosphereby increasing biotic carbon storage, by decreasing GHGemissions, and by producing biomass as a substitutefor fossil fuels. Potential activities includereducing rates of deforestation, increasing landdevoted to forest plantations, regenerating secondaryforest, agroforestry, improving the management offorests and agricultural areas; and producing energycrops.Policymakers debating the inclusion of a variety ofLUCF activities in the Clean Development Mechanism(CDM) of the Kyoto Protocol need to consider themagnitude of the carbon contribution these activitiescould make. Existing estimates of the cumulative GHGoffset potential of LUCF activities often take aglobal or regional approach. In contrast, land-usedecisions are usually made at the local level anddepend on many factors including productive capacityof the land, financial considerations of thelandowner, and environmental concerns. Estimates ofGHG offset potential made at a local, or at mostcountry, level that incorporate these factors may belower, as well as more useful for policy analyses,than global or large regional estimates. Whilecountry-level estimates exist for forestry activities,similar estimates utilizing local information need tobe generated for agricultural activities and biofuels,as well as for the cumulative potential of all LUCFactivities in a particular location.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2008 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Rohatgi, Ajeet; Yelundur, Vijay; Ebong, Abasifreke; Kim, Dong Seop;doi: 10.2172/967921
The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/967921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/967921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu