search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • US
  • King’s University

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Naoko P Kurata; Melanie L J Stiassny; Michael J Hickerson; S Elizabeth Alter;

    Synopsis Climatic and geomorphological changes during the Quaternary period impacted global patterns of speciation and diversification across a wide range of taxa, but few studies have examined these effects on African riverine fish. The lower Congo River is an excellent natural laboratory for understanding complex speciation and population diversification processes, as it is hydrologically extremely dynamic and recognized as a continental hotspot of diversity harboring many narrowly endemic species. A previous study using genome-wide SNP data highlighted the importance of dynamic hydrological regimes to the diversification and speciation in lower Congo River cichlids. However, historical climate and hydrological changes (e.g., reduced river discharge during extended dry periods) have likely also influenced ichthyofaunal diversification processes in this system. The lower Congo River offers a unique opportunity to study climate-driven changes in river discharge, given the massive volume of water from the entire Congo basin flowing through this short stretch of the river. Here, we, for the first time, investigate the impacts of paleoclimatic factors on ichthyofaunal diversification in this system by inferring divergence times and modeling patterns of gene flow in four endemic lamprologine cichlids, including the blind cichlid, Lamprologus lethops. Our results suggest that Quaternary climate changes associated with river discharge fluctuations may have impacted the diversification of species along the system and the emergence of cryptophthalmic phenotype in some endemic species. Our study, using reduced representation sequencing (2RADseq), indicates that the lower Congo River lamprologines emerged during the Early-Middle Pleistocene transition, characterized as one of the earth’s major climatic transformation periods. Modeling results suggest that gene flow across populations and between species was not constant but occurred in temporally constrained pulses. We show that these results correlate with glacial–interglacial fluctuations. The current hyper-diverse fish assemblages of the lower Congo River riverscape likely reflect the synergistic effects of multiple drivers fueling complex evolutionary processes through time.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chi Kong Chyong; David M. Reiner; Rebecca Ly; Mathilde Fajardy;

    This research provides new techno-economic insights into integrating flexible combined-cycle gas turbines with post-combustion carbon capture and storage (CCGT-CCS) for low-carbon power systems. This study developed a versatile unit-commitment optimisation model of CCGT-CCS. This research highlights the model’s adaptability, accommodating diverse techno-economic configurations, feed gases (e.g., biomethane or fossil natural gas), carbon capture rates, and policy instruments. This generalisation empowers seamless application in various policy and market contexts, making the model a potent tool for researchers and policymakers. While the case study focuses on the UK, the findings are relevant for most low-carbon power systems with variable renewable supplies. Analysing the UK’s net-zero scenarios from 2030 to 2050, the economic viability of flexible CCGT-CCS was highlighted. Intertemporal flexibility proves highly valuable with greater electricity price volatility, with a total ROI range of 81–246 %, surpassing the CCGT-CCS plant’s ROI (7–64 %). A flexible solvent storage solution should be seen in the context of the overall system ‘flexibility’ requirements of a low-carbon power system. On a cost basis, solvent storage represents just a fraction of the capital costs of more “mainstream” energy storage technologies, such as lithium-ion batteries or hydro-pumped storage, while CCGT-CCS offers firm power. Overall, while seen as a rather technical solution, if abated fossil fuel generation is to be part of a future low-carbon power system, having this flexibility adds economic benefits not just to operators but also improves overall system security and complements high shares of variable renewables on the grid.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Apollo
    Article . 2023
    License: CC BY NC ND
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Apollo
      Article . 2023
      License: CC BY NC ND
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Naoko P Kurata; Melanie L J Stiassny; Michael J Hickerson; S Elizabeth Alter;

    Synopsis Climatic and geomorphological changes during the Quaternary period impacted global patterns of speciation and diversification across a wide range of taxa, but few studies have examined these effects on African riverine fish. The lower Congo River is an excellent natural laboratory for understanding complex speciation and population diversification processes, as it is hydrologically extremely dynamic and recognized as a continental hotspot of diversity harboring many narrowly endemic species. A previous study using genome-wide SNP data highlighted the importance of dynamic hydrological regimes to the diversification and speciation in lower Congo River cichlids. However, historical climate and hydrological changes (e.g., reduced river discharge during extended dry periods) have likely also influenced ichthyofaunal diversification processes in this system. The lower Congo River offers a unique opportunity to study climate-driven changes in river discharge, given the massive volume of water from the entire Congo basin flowing through this short stretch of the river. Here, we, for the first time, investigate the impacts of paleoclimatic factors on ichthyofaunal diversification in this system by inferring divergence times and modeling patterns of gene flow in four endemic lamprologine cichlids, including the blind cichlid, Lamprologus lethops. Our results suggest that Quaternary climate changes associated with river discharge fluctuations may have impacted the diversification of species along the system and the emergence of cryptophthalmic phenotype in some endemic species. Our study, using reduced representation sequencing (2RADseq), indicates that the lower Congo River lamprologines emerged during the Early-Middle Pleistocene transition, characterized as one of the earth’s major climatic transformation periods. Modeling results suggest that gene flow across populations and between species was not constant but occurred in temporally constrained pulses. We show that these results correlate with glacial–interglacial fluctuations. The current hyper-diverse fish assemblages of the lower Congo River riverscape likely reflect the synergistic effects of multiple drivers fueling complex evolutionary processes through time.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chi Kong Chyong; David M. Reiner; Rebecca Ly; Mathilde Fajardy;

    This research provides new techno-economic insights into integrating flexible combined-cycle gas turbines with post-combustion carbon capture and storage (CCGT-CCS) for low-carbon power systems. This study developed a versatile unit-commitment optimisation model of CCGT-CCS. This research highlights the model’s adaptability, accommodating diverse techno-economic configurations, feed gases (e.g., biomethane or fossil natural gas), carbon capture rates, and policy instruments. This generalisation empowers seamless application in various policy and market contexts, making the model a potent tool for researchers and policymakers. While the case study focuses on the UK, the findings are relevant for most low-carbon power systems with variable renewable supplies. Analysing the UK’s net-zero scenarios from 2030 to 2050, the economic viability of flexible CCGT-CCS was highlighted. Intertemporal flexibility proves highly valuable with greater electricity price volatility, with a total ROI range of 81–246 %, surpassing the CCGT-CCS plant’s ROI (7–64 %). A flexible solvent storage solution should be seen in the context of the overall system ‘flexibility’ requirements of a low-carbon power system. On a cost basis, solvent storage represents just a fraction of the capital costs of more “mainstream” energy storage technologies, such as lithium-ion batteries or hydro-pumped storage, while CCGT-CCS offers firm power. Overall, while seen as a rather technical solution, if abated fossil fuel generation is to be part of a future low-carbon power system, having this flexibility adds economic benefits not just to operators but also improves overall system security and complements high shares of variable renewables on the grid.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Apollo
    Article . 2023
    License: CC BY NC ND
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Apollo
      Article . 2023
      License: CC BY NC ND
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph