- home
- Search
- Energy Research
- 8. Economic growth
- US
- IR
- Energy
- Energy Research
- 8. Economic growth
- US
- IR
- Energy
description Publicationkeyboard_double_arrow_right Article , Journal 1996Publisher:Elsevier BV Frank C. Tang; Duangjai Intarapravich; Kang Wu; Charles J. Johnson; Scott Long; Binsheng Li; Widhyawan Prawiraatmadja; Shiva Pezeshki;The Asia-Pacific region has the most rapidly growing energy demand in the world and will continue to have an increasing impact on world energy demand. Given the heterogeneity of economies in the region, any regional demand analysis has to be constructed country by country. In undertaking the demand forecasts provided in this study, scenarios were developed for high, low, and base cases that take into account variations in economic performance, prices, and fuel substitution in individual nations and in the region as a whole. China is included in the aggregate regional data provided in this article. Data from the countries of the former Soviet Union are not included in the regional totals in this article and are discussed separately in article 4.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(96)00085-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(96)00085-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Bin Xu; Boqiang Lin;Identifying the drivers of carbon dioxide emissions in the manufacturing industry is vital for developing effective environmental policies. This study adopts provincial panel data from 2000 to 2013 and uses nonparametric additive regression models to analyze the drivers of CO2 emissions in the industry. The results show that the nonlinear effect of economic growth on CO2 emissions supports the Environmental Kuznets Curve (EKC) hypothesis. Energy structure has an inverted “U-shape” effect owing to massive coal consumption in the early stages and the optimization of energy structure in the later stage. The inverted “U-shaped” impact of industrialization may be due to the priority development of heavy industry in the early stages and the optimization of industrial structure in the later stages. The impact of urbanization also exhibits an inverted “U-shaped” pattern because of mass consumption of steel and cement products in the early stages and the advancement in clean energy technologies at the later stages. However, specific energy consumption has a positive “U-shaped” impact because of the difference in the speed of technological progress at different times. Thus, the differential effects of these indicators at different times should be taken into consideration when discussing reduction of CO2 emissions in China's manufacturing industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Article , Journal , Other literature type 1995 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Steinberg, M.;Abstract The feasibility of an alternative CO 2 mitigation system and a methanol production process is investigated. The Carnol system has three components: (i) a coal-fired power plant supplying flue gas CO 2 , (ii) a process which converts the CO 2 in the presence of He from natural gas to methanol, (iii) use of methanol as a fuel component in the automotive sector. For the methanol production process alone, up to 100% CO 2 emission reduction can be achieved; for the entire system, up to 65% CO 2 emission reduction can be obtained. The Carnol system is technically feasible and economically competitive with alternative CO 2 -disposal systems for coal-fired power plants. The Carnol process is estimated to be economically attractive compared to the current market price of methanol, especially if credit can be taken for carbon as a marketable coproduct.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/150901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/150901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Emrah Kocak; Eyup Emre Ulug; Burcu Oralhan;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Alice Shiu; Chi Keung Woo; Jay Zarnikau; Yun Liu; Xinpei Luo;Abstract This paper estimates the consumption effects of an electricity rate increase triggered by an electricity decarbonization policy's implementation. Underscoring its real-world relevance is the policy's net impact on CO2 emissions, the sum of (a) the supply-side impact attributable to using generation resources with low emissions to displace those with high emissions, and (b) the demand-side impact caused by energy consumption changes in response to the electricity rate increase. For Hong Kong, the changes in (b) are decreases in electricity consumption and increases in town gas consumption. Using a sample of monthly data for the period of 1981–2016, we document the low price responsiveness of Hong Kong's electricity and town gas demands by customer class (residential, commercial and industrial). Hence, the 40% projected electricity rate increase due to Hong Kong's adopted electricity decarbonization policy may only have a small demand-side impact on CO2 emissions. Finally, the electricity demands' low price responsiveness has two important policy implications. First, Hong Kong's demand-side-management should rely more on energy-efficiency improvements than price-induced consumption reductions. Second, restructuring Hong Kong's electricity industry to introduce wholesale competition should consider the potential for large electricity price spikes and market power abuse in connection to price-inelastic electricity demands.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Elsevier BV Authors: Mark S. Henry;Abstract Using an input-output model, a methodology is developed for analyzing the potential effect on profit margins of manufacturing firms under the Natural Gas Policy Act of 1978. Using South Carolina data, we find that only under the extreme case of a 1985 price for natural gas of $9/MCF is there a potential for a wide range of industries and large numbers of employees to be adversely affected.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(84)90080-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(84)90080-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1994Publisher:Elsevier BV Authors: Toufiq A. Siddiqi;Abstract There is a much better correlation between energy use and GNP or GDP when the latter are calculated using purchasing-power parity (PPP) rather than market-exchange rates (MER). Using PPP-adjusted GDP also shows that the larger developing countries of the world are not, when viewed overall, less energy-efficient than their industrialized country counterparts. The per capita GDPs of the larger developing countries are typically about 1/10 to 1/4 of those of the O.E.C.D. countries, on a PPP-adjusted basis, rather than in the range of 1/80 to 1/10 on an MER-basis. This result may have major implications for future energy requirements of the developing countries, associated emissions of CO2, and formulation of policies for addressing global climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(94)90083-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(94)90083-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tian Yuan; Haibo Zhao; Yingqi Chen; Qing Yang; Qing Yang; Ming Zhou; Pietro Bartocci; Shusong Ba; Francesco Fantozzi;Abstract A better understanding of the carbon market can guide further reforms to improve its functionality. Market efficiency is a key indicator to uncover its current performance. Previous studies have revealed passed carbon market efficiency; however, given the dynamics of the market, it is worthy to track the up-to-date status. This paper, specifically, studies the Hubei pilot carbon market, which is quite interesting, considering its market scale, as well as the COVID-19 pandemic context. Wild bootstrapping Variance Ratio test is implemented to detect the market efficiency with the most recent and abundant data. Results show that the market efficiency in the period of 2014–2020 is around 0.3951, less than 1, suggesting a weak form of efficiency. Observing the sub-sample periods, the efficiency shows to be quite volatile: it climbes from 0.3621 to 0.4027 and finally drops to 0.3985. Furthermore, the market efficiency soares after the COVID-19, which echoes the smooth local reopening thanks to supporting policies. To some extent, this study enlarged the analysis of COVID-19 impact on the industrial sector and for this reason it provides important reference for further research. The unique contribution of this paper is to provide the more updated evidence on the efficiency of China’s pilot carbon market, as well as proofs of soaring market efficiency, after the pandemic.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1976Publisher:Elsevier BV Authors: Eric Hirst;Abstract Household energy use patterns and retail energy price trends for electicity, gas, oil and coal, and gasoline are examined for the period 1950–74. The major results of this examination are listed below. 1. 1. Households directly use about one-third of the Nation's total energy: 22% in their homes and 13% in their autiomobiles. In 1974, American households spent $70 billion on the 25 QBtu of fuel they consumed directly. 2. 2. The Consumer Price Indices for fuels showed sizable changes between 1950 and 1974. Electricity prices (“real prices, not “nominal” prices) declined 27% between 1950 and 1970 and then climbed 9% between 1970 and 1974. Gas prices increased 9% during the 1950s, declined 15% during the 1960s, and rose 4% between 1970 and 1974. Oil and coal prices remained nearly constant between 1950 and 1965; between 1965 and 1972 prices declined 5%; since then prices increased more then 50%. Gasoline prices remained nearly constant between 1950 and 1965; the next seven years saw a 14% decline followed by a 26% increase between 1972 and 1974. 3. 3. The energy price changes proposed by President Ford in January 1975 would, if implemented, increase the Comsumer Price Index by about 1.3% due to direct impacts and another 0.9% due to indirect impacts—a total increase of 2.2%.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(76)90055-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(76)90055-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1982Publisher:Elsevier BV Authors: Chima Eddie I. Okoroji;A public consensus has developed on the need for national energy policies and better planning in the utilization of energy resources in Nigeria. A look at Nigeria's energy future is timely as a period of rapid technological growth and industrial development begins. At the present time, Nigeria exports a relatively high percentage (92%) of the petroleum produced annually. In addition, about 95% of all produced natural gas is flared. Only a relatively minor fraction of the coal produced is used and the rest exported to West African countries. Water power in Nigeria is not yet fully developed. Although the deposits of uranium and oil sand may be substantial, the reserves are not currently known. The proportions in which mineral fuels are used are not related to their relative abundance. Based on present production rates, domestic reserves of petroleum will last 20 years, those of natural gas 63 years, and those of coal 1503 years. Nigeria is not currently and is not likely to become self-sufficient in terms of energy requirements. During the past decade, Nigeria's population has increased by 28.4%. Of vital concern for the immediate future in Nigeria are the demands on energy consumption and mineral resources resulting frommore » increasing population pressure.« less
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(82)90025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(82)90025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1996Publisher:Elsevier BV Frank C. Tang; Duangjai Intarapravich; Kang Wu; Charles J. Johnson; Scott Long; Binsheng Li; Widhyawan Prawiraatmadja; Shiva Pezeshki;The Asia-Pacific region has the most rapidly growing energy demand in the world and will continue to have an increasing impact on world energy demand. Given the heterogeneity of economies in the region, any regional demand analysis has to be constructed country by country. In undertaking the demand forecasts provided in this study, scenarios were developed for high, low, and base cases that take into account variations in economic performance, prices, and fuel substitution in individual nations and in the region as a whole. China is included in the aggregate regional data provided in this article. Data from the countries of the former Soviet Union are not included in the regional totals in this article and are discussed separately in article 4.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(96)00085-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(96)00085-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Bin Xu; Boqiang Lin;Identifying the drivers of carbon dioxide emissions in the manufacturing industry is vital for developing effective environmental policies. This study adopts provincial panel data from 2000 to 2013 and uses nonparametric additive regression models to analyze the drivers of CO2 emissions in the industry. The results show that the nonlinear effect of economic growth on CO2 emissions supports the Environmental Kuznets Curve (EKC) hypothesis. Energy structure has an inverted “U-shape” effect owing to massive coal consumption in the early stages and the optimization of energy structure in the later stage. The inverted “U-shaped” impact of industrialization may be due to the priority development of heavy industry in the early stages and the optimization of industrial structure in the later stages. The impact of urbanization also exhibits an inverted “U-shaped” pattern because of mass consumption of steel and cement products in the early stages and the advancement in clean energy technologies at the later stages. However, specific energy consumption has a positive “U-shaped” impact because of the difference in the speed of technological progress at different times. Thus, the differential effects of these indicators at different times should be taken into consideration when discussing reduction of CO2 emissions in China's manufacturing industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Article , Journal , Other literature type 1995 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Steinberg, M.;Abstract The feasibility of an alternative CO 2 mitigation system and a methanol production process is investigated. The Carnol system has three components: (i) a coal-fired power plant supplying flue gas CO 2 , (ii) a process which converts the CO 2 in the presence of He from natural gas to methanol, (iii) use of methanol as a fuel component in the automotive sector. For the methanol production process alone, up to 100% CO 2 emission reduction can be achieved; for the entire system, up to 65% CO 2 emission reduction can be obtained. The Carnol system is technically feasible and economically competitive with alternative CO 2 -disposal systems for coal-fired power plants. The Carnol process is estimated to be economically attractive compared to the current market price of methanol, especially if credit can be taken for carbon as a marketable coproduct.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/150901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/150901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Emrah Kocak; Eyup Emre Ulug; Burcu Oralhan;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Alice Shiu; Chi Keung Woo; Jay Zarnikau; Yun Liu; Xinpei Luo;Abstract This paper estimates the consumption effects of an electricity rate increase triggered by an electricity decarbonization policy's implementation. Underscoring its real-world relevance is the policy's net impact on CO2 emissions, the sum of (a) the supply-side impact attributable to using generation resources with low emissions to displace those with high emissions, and (b) the demand-side impact caused by energy consumption changes in response to the electricity rate increase. For Hong Kong, the changes in (b) are decreases in electricity consumption and increases in town gas consumption. Using a sample of monthly data for the period of 1981–2016, we document the low price responsiveness of Hong Kong's electricity and town gas demands by customer class (residential, commercial and industrial). Hence, the 40% projected electricity rate increase due to Hong Kong's adopted electricity decarbonization policy may only have a small demand-side impact on CO2 emissions. Finally, the electricity demands' low price responsiveness has two important policy implications. First, Hong Kong's demand-side-management should rely more on energy-efficiency improvements than price-induced consumption reductions. Second, restructuring Hong Kong's electricity industry to introduce wholesale competition should consider the potential for large electricity price spikes and market power abuse in connection to price-inelastic electricity demands.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Elsevier BV Authors: Mark S. Henry;Abstract Using an input-output model, a methodology is developed for analyzing the potential effect on profit margins of manufacturing firms under the Natural Gas Policy Act of 1978. Using South Carolina data, we find that only under the extreme case of a 1985 price for natural gas of $9/MCF is there a potential for a wide range of industries and large numbers of employees to be adversely affected.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(84)90080-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(84)90080-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1994Publisher:Elsevier BV Authors: Toufiq A. Siddiqi;Abstract There is a much better correlation between energy use and GNP or GDP when the latter are calculated using purchasing-power parity (PPP) rather than market-exchange rates (MER). Using PPP-adjusted GDP also shows that the larger developing countries of the world are not, when viewed overall, less energy-efficient than their industrialized country counterparts. The per capita GDPs of the larger developing countries are typically about 1/10 to 1/4 of those of the O.E.C.D. countries, on a PPP-adjusted basis, rather than in the range of 1/80 to 1/10 on an MER-basis. This result may have major implications for future energy requirements of the developing countries, associated emissions of CO2, and formulation of policies for addressing global climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(94)90083-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(94)90083-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tian Yuan; Haibo Zhao; Yingqi Chen; Qing Yang; Qing Yang; Ming Zhou; Pietro Bartocci; Shusong Ba; Francesco Fantozzi;Abstract A better understanding of the carbon market can guide further reforms to improve its functionality. Market efficiency is a key indicator to uncover its current performance. Previous studies have revealed passed carbon market efficiency; however, given the dynamics of the market, it is worthy to track the up-to-date status. This paper, specifically, studies the Hubei pilot carbon market, which is quite interesting, considering its market scale, as well as the COVID-19 pandemic context. Wild bootstrapping Variance Ratio test is implemented to detect the market efficiency with the most recent and abundant data. Results show that the market efficiency in the period of 2014–2020 is around 0.3951, less than 1, suggesting a weak form of efficiency. Observing the sub-sample periods, the efficiency shows to be quite volatile: it climbes from 0.3621 to 0.4027 and finally drops to 0.3985. Furthermore, the market efficiency soares after the COVID-19, which echoes the smooth local reopening thanks to supporting policies. To some extent, this study enlarged the analysis of COVID-19 impact on the industrial sector and for this reason it provides important reference for further research. The unique contribution of this paper is to provide the more updated evidence on the efficiency of China’s pilot carbon market, as well as proofs of soaring market efficiency, after the pandemic.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1976Publisher:Elsevier BV Authors: Eric Hirst;Abstract Household energy use patterns and retail energy price trends for electicity, gas, oil and coal, and gasoline are examined for the period 1950–74. The major results of this examination are listed below. 1. 1. Households directly use about one-third of the Nation's total energy: 22% in their homes and 13% in their autiomobiles. In 1974, American households spent $70 billion on the 25 QBtu of fuel they consumed directly. 2. 2. The Consumer Price Indices for fuels showed sizable changes between 1950 and 1974. Electricity prices (“real prices, not “nominal” prices) declined 27% between 1950 and 1970 and then climbed 9% between 1970 and 1974. Gas prices increased 9% during the 1950s, declined 15% during the 1960s, and rose 4% between 1970 and 1974. Oil and coal prices remained nearly constant between 1950 and 1965; between 1965 and 1972 prices declined 5%; since then prices increased more then 50%. Gasoline prices remained nearly constant between 1950 and 1965; the next seven years saw a 14% decline followed by a 26% increase between 1972 and 1974. 3. 3. The energy price changes proposed by President Ford in January 1975 would, if implemented, increase the Comsumer Price Index by about 1.3% due to direct impacts and another 0.9% due to indirect impacts—a total increase of 2.2%.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(76)90055-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(76)90055-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1982Publisher:Elsevier BV Authors: Chima Eddie I. Okoroji;A public consensus has developed on the need for national energy policies and better planning in the utilization of energy resources in Nigeria. A look at Nigeria's energy future is timely as a period of rapid technological growth and industrial development begins. At the present time, Nigeria exports a relatively high percentage (92%) of the petroleum produced annually. In addition, about 95% of all produced natural gas is flared. Only a relatively minor fraction of the coal produced is used and the rest exported to West African countries. Water power in Nigeria is not yet fully developed. Although the deposits of uranium and oil sand may be substantial, the reserves are not currently known. The proportions in which mineral fuels are used are not related to their relative abundance. Based on present production rates, domestic reserves of petroleum will last 20 years, those of natural gas 63 years, and those of coal 1503 years. Nigeria is not currently and is not likely to become self-sufficient in terms of energy requirements. During the past decade, Nigeria's population has increased by 28.4%. Of vital concern for the immediate future in Nigeria are the demands on energy consumption and mineral resources resulting frommore » increasing population pressure.« less
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(82)90025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(82)90025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu