- home
- Search
- Energy Research
- 2025-2025
- 13. Climate action
- US
- Energy Research
- 2025-2025
- 13. Climate action
- US
description Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Cunzhi Zhao; Xingpeng Li;Batteries can effectively improve the security of energy systems and mitigate climate change by facilitating wind and solar power. The installed capacity of battery energy storage system (BESS), mainly the lithium ion batteries are increasing significantly in recent years. However, the battery degradation cannot be accurately quantified and integrated into energy management system with existing heuristic battery degradation models. This paper proposed a hierarchical deep learning based battery degradation quantification (HDL-BDQ) model to quantify the battery degradation given scheduled BESS daily operations. Particularly, two sequential and cohesive deep neural networks are proposed to accurately estimate the degree of degradation using inputs of battery operational profiles and it can significantly outperform existing fixed or linear rate based degradation models as well as single-stage deep neural models. Training results show the high accuracy of the proposed system. Moreover, a learning and optimization decoupled algorithm is implemented to strategically take advantage of the proposed HDL-BDQ model in optimization-based look-ahead scheduling (LAS) problems. Case studies demonstrate the effectiveness of the proposed HDL-BDQ model in LAS of a microgrid testbed. 12 pages
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:Buildings Benchmark Data Platform; LBNL; NREL; ORNL; PNNL Authors: Earle, Lieko; Xiong, Jie;doi: 10.17041/1993314
One year of continuous monitoring for Indoor Environmental Quality (IEQ) and energy use on a high school campus
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17041/1993314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17041/1993314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute for Operations Research and the Management Sciences (INFORMS) Authors: Brent Austgen; Erhan Kutanoglu; John J. Hasenbein; Surya Santoso;We compare stochastic programming and robust optimization decision models for informing the deployment of ad hoc flood mitigation measures to protect electrical substations prior to an imminent and uncertain hurricane. In our models, the first stage captures the deployment of a fixed quantity of flood mitigation resources, and the second stage captures the operation of a potentially degraded power grid with the primary goal of minimizing load shed. To model grid operation, we introduce adaptations of the direct current (DC) and linear programming alternating current (LPAC) power flow approximation models that feature relatively complete recourse by way of an indicator variable. We apply our models to a pair of geographically realistic flooding case studies, one based on Hurricane Harvey and the other on Tropical Storm Imelda. We investigate the effect of the mitigation budget, the choice of power flow model, and the uncertainty perspective on the optimal mitigation strategy. Our results indicate the mitigation budget and uncertainty perspective are impactful, whereas choosing between the DC and LPAC power flow models is of little to no consequence. To validate our models, we assess the performance of the mitigation solutions they prescribe in an alternating current (AC) power flow model. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: This work was supported by the Energy Institute, The University of Texas at Austin. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0125 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0125 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1287/ijoc.2023.0125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1287/ijoc.2023.0125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Cunzhi Zhao; Xingpeng Li;Batteries can effectively improve the security of energy systems and mitigate climate change by facilitating wind and solar power. The installed capacity of battery energy storage system (BESS), mainly the lithium ion batteries are increasing significantly in recent years. However, the battery degradation cannot be accurately quantified and integrated into energy management system with existing heuristic battery degradation models. This paper proposed a hierarchical deep learning based battery degradation quantification (HDL-BDQ) model to quantify the battery degradation given scheduled BESS daily operations. Particularly, two sequential and cohesive deep neural networks are proposed to accurately estimate the degree of degradation using inputs of battery operational profiles and it can significantly outperform existing fixed or linear rate based degradation models as well as single-stage deep neural models. Training results show the high accuracy of the proposed system. Moreover, a learning and optimization decoupled algorithm is implemented to strategically take advantage of the proposed HDL-BDQ model in optimization-based look-ahead scheduling (LAS) problems. Case studies demonstrate the effectiveness of the proposed HDL-BDQ model in LAS of a microgrid testbed. 12 pages
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:Buildings Benchmark Data Platform; LBNL; NREL; ORNL; PNNL Authors: Earle, Lieko; Xiong, Jie;doi: 10.17041/1993314
One year of continuous monitoring for Indoor Environmental Quality (IEQ) and energy use on a high school campus
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17041/1993314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17041/1993314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute for Operations Research and the Management Sciences (INFORMS) Authors: Brent Austgen; Erhan Kutanoglu; John J. Hasenbein; Surya Santoso;We compare stochastic programming and robust optimization decision models for informing the deployment of ad hoc flood mitigation measures to protect electrical substations prior to an imminent and uncertain hurricane. In our models, the first stage captures the deployment of a fixed quantity of flood mitigation resources, and the second stage captures the operation of a potentially degraded power grid with the primary goal of minimizing load shed. To model grid operation, we introduce adaptations of the direct current (DC) and linear programming alternating current (LPAC) power flow approximation models that feature relatively complete recourse by way of an indicator variable. We apply our models to a pair of geographically realistic flooding case studies, one based on Hurricane Harvey and the other on Tropical Storm Imelda. We investigate the effect of the mitigation budget, the choice of power flow model, and the uncertainty perspective on the optimal mitigation strategy. Our results indicate the mitigation budget and uncertainty perspective are impactful, whereas choosing between the DC and LPAC power flow models is of little to no consequence. To validate our models, we assess the performance of the mitigation solutions they prescribe in an alternating current (AC) power flow model. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: This work was supported by the Energy Institute, The University of Texas at Austin. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0125 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0125 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1287/ijoc.2023.0125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1287/ijoc.2023.0125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu