- home
- Search
- Energy Research
- US
- Energy
- Energy Research
- US
- Energy
description Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors:Isabel C. Gil-García;
Isabel C. Gil-García
Isabel C. Gil-García in OpenAIREAna Fernández-Guillamón;
Ana Fernández-Guillamón
Ana Fernández-Guillamón in OpenAIREM. Socorro García-Cascales;
M. Socorro García-Cascales
M. Socorro García-Cascales in OpenAIREAngel Molina-García;
+1 AuthorsAngel Molina-García
Angel Molina-García in OpenAIREIsabel C. Gil-García;
Isabel C. Gil-García
Isabel C. Gil-García in OpenAIREAna Fernández-Guillamón;
Ana Fernández-Guillamón
Ana Fernández-Guillamón in OpenAIREM. Socorro García-Cascales;
M. Socorro García-Cascales
M. Socorro García-Cascales in OpenAIREAngel Molina-García;
Habib Dagher;Angel Molina-García
Angel Molina-García in OpenAIREhandle: 10578/43026
Nowadays, climate change is a major global societal challenge that significantly increases environmental stress. Most international organizations and policies have promoted initiatives to minimize emissions, reduce fossil fuel dependence and increase renewable energy resource integration into different sectors. An energy transformation toward more renewable systems is thus a priority. Under this scenario, the present paper describes and evaluates an alternative energy conversion matrix–based model to combine sector electrification, power generation units from renewables, and new clean technologies. The proposed green matrix-based model allows analysing future scenarios, including electricity participation in end–use consumption and electric power generated by renewables —potentially integrated into different sectors—. The proposed model is evaluated in the state of Maine (United States). This case study is focused on decarbonizing both residential heating and transport sector through the integration of large offshore wind power plant. Results and discussion is also included in the paper, providing expected energy demand reductions and decreasing emissions through the integration of renewables. This energy transition integration case study is proposed in three road-maps with different penetration rates and time scales. The proposed green matrix–based model can be also applied to other areas and energy resources, as an alternative way to analyse and estimate renewable integration into different sectors. 2023-24
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989Publisher:Elsevier BV Authors: Hillard G. Huntington;Abstract Shifts among economic sectors within manufacturing have had significant effects on industrial energy demand since 1973. At least one-third of the reduction in U.S. energy intensity for fossil fuels can be attributed to sectoral shifts over this historical period. Shifts among economic sectors will continue to be an important source of uncertainty in forecasting industrial energy demand. Without greater consensus on the major causes of these shifts, analysts will be unable to separate how much of the past shifts can be reversed with changed energy and economic conditions and how much will remain embedded in the economic structure. Standard economic projections anticipate a continuation of the shift away from large industrial energy-using sectors, although at a slower rate. The Wharton economic projections used recently in an Energy Modeling Forum (EMF) study indicated a decline rate of about half that experienced during the 1973–1981 period. Even so, this effect alone could contribute as much as 0.5% per annum to the rate of decline in aggregate energy intensity within manufacturing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(89)90019-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(89)90019-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: C.F. Hutchinson; J.R. Huning; E.H. Warren;Abstract An alternative to cost/benefit analysis for analyzing the equity of electric power generation facility location, utilizing the potential for air quality degradation, is developed and applied to California. Siting issues motivating disagreement on facility location are reviewed. Equity concepts are introduced, and their implementation is discussed. Several measures for assessing the equity of facility location are proposed, and the equities of existing facility locations in California are analyzed for each measure. Equity considerations for future siting decisions are examined.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(85)90108-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(85)90108-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1992Publisher:Elsevier BV Authors: Shen Chien-Ming; William M. Worek;Abstract The effect of heat conduction in the wall on the effectiveness of rotary regenerators is described. In order to document the effect of wall conduction, it is assumed that the thermal conductance of the solid is finite, both parallel and perpendicular to the gas flow. Two parameters introduced for modeling conduction effects are the Biot numbers in the y (Bi y ) and x (Bi x ) directions. Our results show that for certain values of Bi x and Bi y , the effectiveness including wall conduction can deviate substantially from results obtained when wall conduction is neglected.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(92)90009-o&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(92)90009-o&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989Publisher:Elsevier BV Authors: Robin A. Douthitt;Abstract The objectives of this study were the development and application of a model of residential space-heating demand, which incorporates economic, family-composition and structural housing factors as explanatory variables. We assess the impact of home retrofitting and other conservation actions on residential energy demand by analyzing data collected as part of a national sample of Canadian households, which are supplemented with rate-structure and energy-price data. Models of demand for space-heating fuels are estimated for residential users of electricity, natural gas and oil. Parameter estimates are corrected for sample-selection bias. The results indicate that residential consumers of space-heating fuels in Canada exhibit a price response that is significantly different from zero. Further, households facing higher than average utility prices before experiencing a fuel-price increase will, in the long run, exhibit a unitary price response.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(89)90062-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(89)90062-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:Asher J. Hancock;
Laura B. Fulton; Justin Ying;Asher J. Hancock
Asher J. Hancock in OpenAIRECorey E. Clifford;
+2 AuthorsCorey E. Clifford
Corey E. Clifford in OpenAIREAsher J. Hancock;
Laura B. Fulton; Justin Ying;Asher J. Hancock
Asher J. Hancock in OpenAIRECorey E. Clifford;
Shervin Sammak; Matthew M. Barry;Corey E. Clifford
Corey E. Clifford in OpenAIREAbstract A robust computational framework was developed and implemented to numerically resolve the radiation view factor, F i j , within three-dimensional geometries, and, in particular, thermoelectric generators (TEGs). The proposed numerical methodology utilizes a graphics processing unit-accelerated ray-tracing algorithm to capitalize on the parallel nature of the view factor formulation. The shadow effect, resulting from interference with the TEGs conductive interconnectors and thermoelectric legs, was accounted for via the Moller-Trumbore ray-triangle intersection algorithm with back-face culling enabled. The effect of interconnector thickness, thermoelectric leg height-to-width ratios, TEG packing density, and the number of junctions on F i j is explored for various TEG configurations. Validation is performed against analytical values for planar and non-planar geometries, in addition to a point-in-polygon intersection algorithm for single-junction TEGs. Results indicate that for a constant packing density, F i j asymptotically decreases with increasing distance across the TEG’s hot- and cold-sides. For an increasing packing density and constant distance across the TEG’s junction, F i j decreases. In a multi-junction device, F i j was found to asymptotically increase with junction number, implying that for large multi-junction TEG designs, a simpler model may serve to accurately predict the view factor. The code developed herein is open-source and can be found at https://github.com/AasherH/GPU-Accelerated-View-Factor-Calculator .
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Abstract Integrated, model-based energy planning particularly in cities and territories involves different planning and modelling activities, which, from a methodological point of view, can be divided into four phases. The analysis and findings of this study focus on planning “phase I”, which is devoted to preparation and orientation. Despite the importance of this planning phase, which is underlined in several papers, only a few studies have addressed planning phase I partially using a systematic methodology. A brief review of planning activities, problems and methods enables mapping the applicability of these methods to their purpose in planning context. The review reveals that no methodological support is provided to fulfil all of the requirements and tasks of this phase. Thus, a methodology for supporting “phase I” activities is presented and illustrated using Singapore as a case study. The methodology combines methods that are either already used in energy planning or borrowed from the area of inventive problem solving, and a specially developed method. The methodology can explicitly reveal problems, key and hidden contradictions, which allows a better understanding of the situation and requirements for the next planning phase especially when looking for solutions beyond common optimality (innovative solutions).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981Publisher:Elsevier BV Authors: Eric Hirst; Linda Berry; Jon Soderstrom;Abstract Evaluation efforts of utilities with active home energy audit programs were reviewed to provide insights into the operations and effectiveness of existing utility home energy audit programs. About half the utilities contacted had little or no evaluation activity. Of those with evaluation activity, most conducted only informal evaluations for in-house use. A few utilities had conducted fully documented formal evaluations. On the basis mainly of written reports received from the utilities, findings about customer response to programs are summarized. The topics discussed include: determinants of program participation rates, use of financing, attitudes toward programs, actions taken, characteristics of participants and energy savings due to programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(81)90017-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(81)90017-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:Juan Zhang;
Lulu Sun; Jiaqing Zhang;Juan Zhang
Juan Zhang in OpenAIREYanming Ding;
+2 AuthorsYanming Ding
Yanming Ding in OpenAIREJuan Zhang;
Lulu Sun; Jiaqing Zhang;Juan Zhang
Juan Zhang in OpenAIREYanming Ding;
Wenlu Chen; Yu Zhong;Yanming Ding
Yanming Ding in OpenAIREAbstract Pyrolysis characteristics of Beizao oil shale in nitrogen were investigated by thermogravimetric analysis coupled with deconvolution procedure. A new method was proposed to separate multistep thermal decomposition process. Kissinger-Kai method was employed to determine the peak positions of main components involved in the complex reaction, and the overlapping peaks were separated by bi-Gaussian function according to the thermal knowledge of sub-reaction. The results showed that four parallel reactions were observed in the whole process, including the decomposition of kerogen, pyrite, carbonate, as well as removal of crystal water from clay minerals. Furthermore, the kinetic parameters of the separated reactions were estimated by traditional model-free and model-fitting methods on the basis of deconvolution analysis, wherein the optimal reaction models were modified with the accommodation function. Eventually, these parameters were optimized to predict the pyrolysis behavior. It was found that the obtained kinetic parameters and four-component reaction models can well characterize the entire pyrolysis process of Beizao oil shale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Ruijia Fan; Guofeng Chang; Yiming Xu; Jiamin Xu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu