- home
- Search
Filters
Clear All- Energy Research
- 15. Life on land
- 7. Clean energy
- US
- PANGAEA
- Energy Research
- 15. Life on land
- 7. Clean energy
- US
- PANGAEA
apps Other research productkeyboard_double_arrow_right Other ORP type 2019Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NSF | Cryptic Hydrology of the ...NSF| Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, AntarcticaAuthors: Linhardt, Tobias; Levy, Joseph S; Thomas, Christoph K;From 26 December 2012 to 21 January 2013 we measured relevant parameters for surface energy and mass exchange calculation at three closely collocated sites near the Ross Sea shore in the valley floor of lower Taylor Valley, McMurdo Dry Valleys, Antarctica. At any time during the experiment, two surface energy balance stations were operated: One station was installed throughout the whole period at the investigated water track, referred to as WT. The other station was operated as a reference representing the dominant non-water track (NWT), bare soil surfaces in lower Taylor Valley; it was successively installed at two sites with different soil textures: PLD was located on a paleolake delta dominated by fine surficial sediments, while GT represented coarse glacial till. At each station the following instruments were installed: A net radiometer (NR01, Hukseflux Thermal Sensors B.V., Delft, NL) was used for measuring solar and terrestrial radiation, an ultrasonic anemometer (81000 VRE, R.M. Young Company, Traverse City, MI, USA) and an infrared gas analyzer (LI-7500, LI-COR Inc., Lincoln, NE, USA) recorded data for turbulent heat flux estimation via the eddy-covariance method. Thermistors and thermocouples recorded soil temperatures in several depths in the thawed layer. Additionally, we used a thermal properties analyzer (KD2 Pro, Decagon Devices, Pullman, WA, USA) for measuring soil thermal properties for several samples taken from the surface. Eddy-covariance processing was done with the bmmflux tool of the University of Bayreuth (see appendix in Thomas et al., 2009), including data quality assessment after Foken et al. (2004). Turbulent flux footprints were modeled with the TERRAFEX model of the University of Bayreuth (Göckede, 2001) which provided contributions of adjacent land cover types to the flux footprint. Further information on the experimental setup can be found in Linhardt et al. (2019).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d7dbfe8af53b15478d6e4f76738ef064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d7dbfe8af53b15478d6e4f76738ef064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2015Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NSF | NSF Postdoctoral Fellowsh..., NSF | CAREER: Life on the Edge:...NSF| NSF Postdoctoral Fellowship in Biology for FY 2011 ,NSF| CAREER: Life on the Edge: The Effects of Climate, Competition and History on Range LimitsAuthors: Harsch, Melanie A; HilleRisLambers, Janneke;Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations) – despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region-to region- variation in responses (i.e. from as many as 73% to as few as32% of species shifting upward or downward). To understand the factors that might be controlling region-specific distributional shifts, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction of distribution limit shifts was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species shifted upward at their upper elevational limit when snowfall declined at slower rates and minimum temperatures increased. By contrast, species shifted upwards at their lower elevation limit when maximum temperatures increased or both temperature and precipitation decreased. Our results suggest that future species' elevational distribution shifts will be complex, depending on the interaction between seasonal temperature and precipitation change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::f354693eb01ee89f791ef4534be53bbb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::f354693eb01ee89f791ef4534be53bbb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:NSF | BREAD: Biochar Inoculants...NSF| BREAD: Biochar Inoculants for Enabling Smallholder AgricultureSun, Tianran; Guzman, Juan J L; Seward, James D; Enders, Akio; Yavitt, Joseph B; Lehmann, Johannes; Angenent, Largus T;In this study, we observed a methane depression phenomenon induced by the accumulation of fire-derived pyrogenic carbon in peat soil. This observation was obtained through laboratory microcosm and bioelectrochemical incubation experiments. The measured parameters involved in this observation were mainly methane production rate, environmental electron transfer balance, and isotopic tracking that shows the degradation extent of pyrogenic carbon. The data was collected from 2017 to 2018 during the laboratory incubation of peat soil from New York State, USA. We collected the data to investigate the effect of pyrogenic carbon in controlling greenhouse gas emissions in peat soils. The data was collected by carbon isotopic analysis system, electron transfer monitoring and quantification device, and microbial sequencing analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.933381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.933381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2014Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NSF | 4,500 years of Hydrologic...NSF| 4,500 years of Hydrologic Variability from Zaca Lake, close to the Santa Barbara BasinAuthors: Niedermeyer, Eva M; Sessions, Alex L; Feakins, Sarah J; Mohtadi, Mahyar;The Indo-Pacific Warm Pool (IPWP) is a key site for the global hydrologic cycle, and modern observations indicate that both the Indian Ocean Zonal Mode (IOZM) and the El Niño Southern Oscillation exert strong influence on its regional hydrologic characteristics. Detailed insight into the natural range of IPWP dynamics and underlying climate mechanisms is, however, limited by the spatial and temporal coverage of climate data. In particular, long-term (multimillennial) precipitation patterns of the western IPWP, a key location for IOZM dynamics, are poorly understood. To help rectify this, we have reconstructed rainfall changes over Northwest Sumatra (western IPWP, Indian Ocean) throughout the past 24,000 y based on the stable hydrogen and carbon isotopic compositions (dD and d13C, respectively) of terrestrial plant waxes. As a general feature of western IPWP hydrology, our data suggest similar rainfall amounts during the Last Glacial Maximum and the Holocene, contradicting previous claims that precipitation increased across the IPWP in response to deglacial changes in sea level and/or the position of the Intertropical Convergence Zone. We attribute this discrepancy to regional differences in topography and different responses to glacioeustatically forced changes in coastline position within the continental IPWP. During the Holocene, our data indicate considerable variations in rainfall amount. Comparison of our isotope time series to paleoclimate records from the Indian Ocean realm reveals previously unrecognized fluctuations of the Indian Ocean precipitation dipole during the Holocene, indicating that oscillations of the IOZM mean state have been a constituent of western IPWP rainfall over the past ten thousand years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e0df4ab449f9e10dce610482a9bbde98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e0df4ab449f9e10dce610482a9bbde98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
apps Other research productkeyboard_double_arrow_right Other ORP type 2019Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NSF | Cryptic Hydrology of the ...NSF| Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, AntarcticaAuthors: Linhardt, Tobias; Levy, Joseph S; Thomas, Christoph K;From 26 December 2012 to 21 January 2013 we measured relevant parameters for surface energy and mass exchange calculation at three closely collocated sites near the Ross Sea shore in the valley floor of lower Taylor Valley, McMurdo Dry Valleys, Antarctica. At any time during the experiment, two surface energy balance stations were operated: One station was installed throughout the whole period at the investigated water track, referred to as WT. The other station was operated as a reference representing the dominant non-water track (NWT), bare soil surfaces in lower Taylor Valley; it was successively installed at two sites with different soil textures: PLD was located on a paleolake delta dominated by fine surficial sediments, while GT represented coarse glacial till. At each station the following instruments were installed: A net radiometer (NR01, Hukseflux Thermal Sensors B.V., Delft, NL) was used for measuring solar and terrestrial radiation, an ultrasonic anemometer (81000 VRE, R.M. Young Company, Traverse City, MI, USA) and an infrared gas analyzer (LI-7500, LI-COR Inc., Lincoln, NE, USA) recorded data for turbulent heat flux estimation via the eddy-covariance method. Thermistors and thermocouples recorded soil temperatures in several depths in the thawed layer. Additionally, we used a thermal properties analyzer (KD2 Pro, Decagon Devices, Pullman, WA, USA) for measuring soil thermal properties for several samples taken from the surface. Eddy-covariance processing was done with the bmmflux tool of the University of Bayreuth (see appendix in Thomas et al., 2009), including data quality assessment after Foken et al. (2004). Turbulent flux footprints were modeled with the TERRAFEX model of the University of Bayreuth (Göckede, 2001) which provided contributions of adjacent land cover types to the flux footprint. Further information on the experimental setup can be found in Linhardt et al. (2019).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d7dbfe8af53b15478d6e4f76738ef064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d7dbfe8af53b15478d6e4f76738ef064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2015Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NSF | NSF Postdoctoral Fellowsh..., NSF | CAREER: Life on the Edge:...NSF| NSF Postdoctoral Fellowship in Biology for FY 2011 ,NSF| CAREER: Life on the Edge: The Effects of Climate, Competition and History on Range LimitsAuthors: Harsch, Melanie A; HilleRisLambers, Janneke;Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations) – despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region-to region- variation in responses (i.e. from as many as 73% to as few as32% of species shifting upward or downward). To understand the factors that might be controlling region-specific distributional shifts, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction of distribution limit shifts was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species shifted upward at their upper elevational limit when snowfall declined at slower rates and minimum temperatures increased. By contrast, species shifted upwards at their lower elevation limit when maximum temperatures increased or both temperature and precipitation decreased. Our results suggest that future species' elevational distribution shifts will be complex, depending on the interaction between seasonal temperature and precipitation change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::f354693eb01ee89f791ef4534be53bbb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::f354693eb01ee89f791ef4534be53bbb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:NSF | BREAD: Biochar Inoculants...NSF| BREAD: Biochar Inoculants for Enabling Smallholder AgricultureSun, Tianran; Guzman, Juan J L; Seward, James D; Enders, Akio; Yavitt, Joseph B; Lehmann, Johannes; Angenent, Largus T;In this study, we observed a methane depression phenomenon induced by the accumulation of fire-derived pyrogenic carbon in peat soil. This observation was obtained through laboratory microcosm and bioelectrochemical incubation experiments. The measured parameters involved in this observation were mainly methane production rate, environmental electron transfer balance, and isotopic tracking that shows the degradation extent of pyrogenic carbon. The data was collected from 2017 to 2018 during the laboratory incubation of peat soil from New York State, USA. We collected the data to investigate the effect of pyrogenic carbon in controlling greenhouse gas emissions in peat soils. The data was collected by carbon isotopic analysis system, electron transfer monitoring and quantification device, and microbial sequencing analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.933381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.933381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2014Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NSF | 4,500 years of Hydrologic...NSF| 4,500 years of Hydrologic Variability from Zaca Lake, close to the Santa Barbara BasinAuthors: Niedermeyer, Eva M; Sessions, Alex L; Feakins, Sarah J; Mohtadi, Mahyar;The Indo-Pacific Warm Pool (IPWP) is a key site for the global hydrologic cycle, and modern observations indicate that both the Indian Ocean Zonal Mode (IOZM) and the El Niño Southern Oscillation exert strong influence on its regional hydrologic characteristics. Detailed insight into the natural range of IPWP dynamics and underlying climate mechanisms is, however, limited by the spatial and temporal coverage of climate data. In particular, long-term (multimillennial) precipitation patterns of the western IPWP, a key location for IOZM dynamics, are poorly understood. To help rectify this, we have reconstructed rainfall changes over Northwest Sumatra (western IPWP, Indian Ocean) throughout the past 24,000 y based on the stable hydrogen and carbon isotopic compositions (dD and d13C, respectively) of terrestrial plant waxes. As a general feature of western IPWP hydrology, our data suggest similar rainfall amounts during the Last Glacial Maximum and the Holocene, contradicting previous claims that precipitation increased across the IPWP in response to deglacial changes in sea level and/or the position of the Intertropical Convergence Zone. We attribute this discrepancy to regional differences in topography and different responses to glacioeustatically forced changes in coastline position within the continental IPWP. During the Holocene, our data indicate considerable variations in rainfall amount. Comparison of our isotope time series to paleoclimate records from the Indian Ocean realm reveals previously unrecognized fluctuations of the Indian Ocean precipitation dipole during the Holocene, indicating that oscillations of the IOZM mean state have been a constituent of western IPWP rainfall over the past ten thousand years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e0df4ab449f9e10dce610482a9bbde98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e0df4ab449f9e10dce610482a9bbde98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu