- home
- Search
- Energy Research
- 12. Responsible consumption
- 1. No poverty
- RU
- Russian Academy of Sciences
- Energy Research
- 12. Responsible consumption
- 1. No poverty
- RU
- Russian Academy of Sciences
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Wiley Authors: Shivam Pandey; Vinod Kumar; Mikhail S. Vlaskin; Manisha Nanda;doi: 10.1002/eng2.12284
AbstractAgeratum conyzoides, an herb found throughout the year, is generally considered as a weed: it causes reduction in soil productivity and leads to health hazards for cattle and humans. However, its biomass can easily represent a cost‐effective source, which can be used for lignocellulosic biofuel production. The conversion of lignocellulosic biomass to ethanol has drawn much attention in recent times due to abundance of biomass. In the present study, the cellulose and hemicellulose biomass of the leaf and stem of A. conyzoides was converted to sugars using acid hydrolysis.146.01 ± 02 mg/g of fermentable sugar was obtained from A. conyzoides. The maximum ethanol concentration 11.89 g/L was obtained after 7 days. Scanning electron microscopy was used to characterize the surface morphology after acid hydrolysis of biomass. In the current study, the residues of acid hydrolysis and fermented wastewater was used for biogas production through anaerobic digestion. The yield of biogas from the residues of acid hydrolysis and fermented wastewater was 204 L kg−1VS. The results obtained indicate that A. conyzoides may be considered as a promising feedstock for bioethanol and biogas production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eng2.12284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eng2.12284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Informa UK Limited Authors: Anderson Barbosa-Evaristo; Ignacio A. Fernández-Coppel; Adriana Corrêa-Guimarães; Jesús Martín-Gil; +4 AuthorsAnderson Barbosa-Evaristo; Ignacio A. Fernández-Coppel; Adriana Corrêa-Guimarães; Jesús Martín-Gil; Leonardo Duarte-Pimentel; José A. Saraiva-Grossi; Luis M. Navas-Gracia; Pablo Martín-Ramos;The expansion of the production and use of bioenergy is one of the most efficient mechanisms to reduce greenhouse gas (GHG) emissions. Nevertheless, the environmental impact of the production processes for many raw materials remains unexplored. Several studies have pointed to macauba palm as a promising species for biofuel production in the tropics, but investigations on the environmental benefits of its cultivation have not been reported so far. In this work, an analysis of macauba production system in terms of GHG emissions and CO2 uptake has been conducted for a productive cycle. The energy conversion efficiency per unit area of land has been put in relationship with crop productivity and related to the dilution effect of production inputs. Simulation results estimate GHG emissions of 180 Mg CO2eq·ha-1 and a CO2 fixation ranging from 796 to 1137 Mg CO2eq·ha-1. The net energy balance would reach 512.3 GJ·ha-1 and energy efficiency would be 24.2 GJ·GJ-1. These results suggest that macauba would outperform traditional energy crops such as sugarcane, oil palm, sunflower, corn or jatropha in terms of efficiency. The domestication and exploitation in extensive farming of this species as an agroforestry crop, although still at an early stage, has a bright future.
Carbon Management arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of Zaragoza (ZAGUAN)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1463783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Carbon Management arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of Zaragoza (ZAGUAN)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1463783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Pleiades Publishing Ltd Authors: A. V. Keiko; S. Filippov;The article presents results from analyzing the state of the art achieved in the coal gasification technologies developed around the world and the demand for them. It is shown that such technologies have presently arrived at a crossroad in their development. Their future will be determined by the development prospects of coal energy as a whole. Coal still continues to play the most important role in the world energy. In recent years, external factors have become extremely negative for the development of coal energy. Among other fuels, coal produces the largest specific emissions of CO2 during its combustion, in view of which it may become the first victim of the unfolding energy decarbonization policy. Under such conditions, there is a need to diversify the coal utilization fields, primarily through manufacturing a wide range of chemical products with a high added value. This generates the need to develop the appropriate technologies, and, first of all, gasification technologies, the use of which opens the possibility of making almost the entire range of products from coal that are obtained from petroleum and natural gas. It has been determined that gasification technologies have already reached a high level of technical maturity, and a large number of gasifier designs have been proposed. It has been determined that the majority of operating coal gasification plants are presently used for manufacturing various chemical products, first of all, natural gas substitute (which is then forwarded to gas networks) and also methanol and ammonia. It is pointed out that only a few integrated gasification combined cycle plants have been implemented and planned for construction, which means that the private sector shows little interest in this technology. At the same time, such plants have quite a high potential for being used in low-carbon energy, of course, provided that the problem of disposing the captured CO2 is solved. It is shown that a large number of gasifier equipment manufacturers are available around the world. However, gasifiers are produced in single units or in a small series, which unavoidably leads to the high cost of this equipment. For the further innovative development of the gasification technology, combined efforts should be taken by the private sector and the state.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0040601521030046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0040601521030046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Authors: Elena V. Stepanova; A. O. Maksimov;We have developed a technique and a programming-computing suite (PCS) to estimate the effect of equipment reliability indices, schedules, and regular overhaul scopes on reliability and efficiency of combined heat and power plants (CHPPs). We describe the approach to predict heat and electric loads for the investigated CHPP operation period, taking into account the features of the power cogeneration. We performed optimization studies of two operation periods (different in overhaul resources) for an industrial-heating CHPP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20185802014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20185802014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Kuan Zhang; Bin Zhou; Canbing Li; Nikolai Voropai; Jiayong Li; Wentao Huang; Tao Wang;Abstract Low renewable energy source (RES) accommodation and energy utilization efficiency impose great challenge to reliable energy supplies for rural residents. This paper proposes an optimal coordinated multi-energy conversion and management framework with a biogas-dominated hybrid renewable microgrid for multi-carrier energy supplies in off-grid remote areas. In this framework, multi-energy multi-timeframe couplings among biomass and other renewables are modeled based on biogas digesting thermodynamics for the coordinated interaction among electricity, biogas and thermal energy carriers, and a sustainable energy hub is formulated for mapping various renewables into diversified energy loads. The proposed energy hub can facilitate mitigating the fluctuating outputs of RES by harvesting hydro-wind-solar energies into the form of biogas, and an evaluation model is proposed based on hydrodynamic networking mechanisms to calculate the state of energy (SOE) in the biogas storage. Furthermore, a hierarchical multi-energy management strategy is presented to dynamically optimize the production, conversion, storage and consumption of multi-carrier energy flows for system energy-efficiency enhancement. Case studies on a stand-alone microgrid demonstration validate that the biogas yield can be improved by 31.75% with digesting thermodynamic effects, and the battery degradation cost can be reduced by at least 22.63% considering the SOE of biogas storage with hydrodynamic effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:NSERCNSERCAuthors: Yiyang Chen; Rogemar Mamon; Fabio Spagnolo; Nicola Spagnolo;doi: 10.1002/sd.2561
AbstractThe object of this paper is to investigate the dynamic causal relationship between economic growth and renewable energy in Canada. The causal relationship is examined under the neoclassical production function framework. We employed a panel autoregressive distributed lag model controlling for different states of the economy by incorporating a dummy variable, which indicates the economic peak and trough. The data set consists of annual real GDP, capital formation, labor, and electricity generation by renewables for nine Canadian provinces covering from 1981 to 2015. The empirical results find that there is a unidirectional causality from renewable energy to economic growth in the long run. In the short run, a unidirectional causality going from renewable energy to economic growth only during the expansion period is observed. Our study suggests that renewable energy policies should be designed and implemented in a way that takes into account the nonlinear relationship between renewable energy and economic growth. This could involve promoting the development and deployment of renewable energy sources as part of their economic stimulus packages during economic upturns.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26410Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26410Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Pleiades Publishing Ltd Authors: L. A. Bol’shov;The main aspects limiting the widespread development of nuclear energy—the consequences of possible severe accidents and the problem of radioactive waste management—are considered. It is shown that modern computational tools and digital technologies can successfully solve the problems of substantiating and ensuring the safety of nuclear facilities, including modeling the states and processes occurring in a reactor installation, and the entire complex of nuclear power plant (NPP) systems, the spread of contaminants in emergency situations, the choice and justification of solutions on decommissioning nuclear and radiation hazardous facilities, and the disposal of radioactive waste (RW).
Herald of the Russia... arrow_drop_down Herald of the Russian Academy of SciencesArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1019331620040012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Herald of the Russia... arrow_drop_down Herald of the Russian Academy of SciencesArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1019331620040012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Publisher:MDPI AG Ejigayehu Teshome; Tilahun A. Teka; Ruchira Nandasiri; Jyoti Ranjan Rout; Difo Voukang Harouna; Tessema Astatkie; Markos Makiso Urugo;Fruits are commonly used, fresh or processed, to prepare different industrial products with superior nutritional and health-promoting properties. Currently, the demand for processed fruit products has motivated the rapid growth of the fruit processing industries, persuading them to produce an enormous amount of by-products with less utilization. Furthermore, people's shifting dietary habits and lack of awareness of nutritional properties result in an avoidable load of fruit by-products. The knowledge of the value of by-products urges exploration with proper documentation, emphasizing the health benefits of some such products. Hence, this review is prepared by carefully analyzing the recent literature on industrial applications of fruit by-products and their nutritional and health-promoting properties. The use of fruit by-products in food industries for various purposes has been reported in the past and has been reviewed and described here. Fruit by-products are a good source of nutrients and bioactive components, including polyphenols, dietary fibers, and vitamins, implying that they could have an important role for novel, value-added functional food properties. Furthermore, fruit by-products are used as the substrate for the production of organic acids, essential oils, enzymes, fuel, biodegradable packaging materials, and preservatives.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202302.0481.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202302.0481.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetPaul Zagamé; Adam Hawkes; Felix Neuner; Marc Vielle; Elisa Delpiazzo; Elisa Delpiazzo; Elisa Delpiazzo; Alessia Elia; Patrick Plötz; Arnaud Fougeyrollas; Annela Anger-Kraavi; Pierre Le Mouel; Alessandro Chiodi; Maurizio Gargiulo; Jorge Moreno; Alexandros Nikas; Sara Giarola; Alexandre C. Köberle; Andrea Herbst; Haris Doukas; I. Sognnaes; Neil Grant; Joeri Rogelj; Joeri Rogelj; Ha Bui; Ben McWilliams; Sigit Perdana; Konstantinos Koasidis; Lorenza Campagnolo; Lorenza Campagnolo; Lorenza Campagnolo; Rocco De Miglio; Baptiste Boitier; Georg Zachmann; Glen P. Peters; Dirk-Jan van de Ven; Andrey Kolpakov; Gabriele Cassetti; Shivika Mittal; Ajay Gambhir;Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 60visibility views 60 download downloads 82 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Wiley Authors: Shivam Pandey; Vinod Kumar; Mikhail S. Vlaskin; Manisha Nanda;doi: 10.1002/eng2.12284
AbstractAgeratum conyzoides, an herb found throughout the year, is generally considered as a weed: it causes reduction in soil productivity and leads to health hazards for cattle and humans. However, its biomass can easily represent a cost‐effective source, which can be used for lignocellulosic biofuel production. The conversion of lignocellulosic biomass to ethanol has drawn much attention in recent times due to abundance of biomass. In the present study, the cellulose and hemicellulose biomass of the leaf and stem of A. conyzoides was converted to sugars using acid hydrolysis.146.01 ± 02 mg/g of fermentable sugar was obtained from A. conyzoides. The maximum ethanol concentration 11.89 g/L was obtained after 7 days. Scanning electron microscopy was used to characterize the surface morphology after acid hydrolysis of biomass. In the current study, the residues of acid hydrolysis and fermented wastewater was used for biogas production through anaerobic digestion. The yield of biogas from the residues of acid hydrolysis and fermented wastewater was 204 L kg−1VS. The results obtained indicate that A. conyzoides may be considered as a promising feedstock for bioethanol and biogas production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eng2.12284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eng2.12284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Informa UK Limited Authors: Anderson Barbosa-Evaristo; Ignacio A. Fernández-Coppel; Adriana Corrêa-Guimarães; Jesús Martín-Gil; +4 AuthorsAnderson Barbosa-Evaristo; Ignacio A. Fernández-Coppel; Adriana Corrêa-Guimarães; Jesús Martín-Gil; Leonardo Duarte-Pimentel; José A. Saraiva-Grossi; Luis M. Navas-Gracia; Pablo Martín-Ramos;The expansion of the production and use of bioenergy is one of the most efficient mechanisms to reduce greenhouse gas (GHG) emissions. Nevertheless, the environmental impact of the production processes for many raw materials remains unexplored. Several studies have pointed to macauba palm as a promising species for biofuel production in the tropics, but investigations on the environmental benefits of its cultivation have not been reported so far. In this work, an analysis of macauba production system in terms of GHG emissions and CO2 uptake has been conducted for a productive cycle. The energy conversion efficiency per unit area of land has been put in relationship with crop productivity and related to the dilution effect of production inputs. Simulation results estimate GHG emissions of 180 Mg CO2eq·ha-1 and a CO2 fixation ranging from 796 to 1137 Mg CO2eq·ha-1. The net energy balance would reach 512.3 GJ·ha-1 and energy efficiency would be 24.2 GJ·GJ-1. These results suggest that macauba would outperform traditional energy crops such as sugarcane, oil palm, sunflower, corn or jatropha in terms of efficiency. The domestication and exploitation in extensive farming of this species as an agroforestry crop, although still at an early stage, has a bright future.
Carbon Management arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of Zaragoza (ZAGUAN)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1463783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Carbon Management arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of Zaragoza (ZAGUAN)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1463783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Pleiades Publishing Ltd Authors: A. V. Keiko; S. Filippov;The article presents results from analyzing the state of the art achieved in the coal gasification technologies developed around the world and the demand for them. It is shown that such technologies have presently arrived at a crossroad in their development. Their future will be determined by the development prospects of coal energy as a whole. Coal still continues to play the most important role in the world energy. In recent years, external factors have become extremely negative for the development of coal energy. Among other fuels, coal produces the largest specific emissions of CO2 during its combustion, in view of which it may become the first victim of the unfolding energy decarbonization policy. Under such conditions, there is a need to diversify the coal utilization fields, primarily through manufacturing a wide range of chemical products with a high added value. This generates the need to develop the appropriate technologies, and, first of all, gasification technologies, the use of which opens the possibility of making almost the entire range of products from coal that are obtained from petroleum and natural gas. It has been determined that gasification technologies have already reached a high level of technical maturity, and a large number of gasifier designs have been proposed. It has been determined that the majority of operating coal gasification plants are presently used for manufacturing various chemical products, first of all, natural gas substitute (which is then forwarded to gas networks) and also methanol and ammonia. It is pointed out that only a few integrated gasification combined cycle plants have been implemented and planned for construction, which means that the private sector shows little interest in this technology. At the same time, such plants have quite a high potential for being used in low-carbon energy, of course, provided that the problem of disposing the captured CO2 is solved. It is shown that a large number of gasifier equipment manufacturers are available around the world. However, gasifiers are produced in single units or in a small series, which unavoidably leads to the high cost of this equipment. For the further innovative development of the gasification technology, combined efforts should be taken by the private sector and the state.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0040601521030046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0040601521030046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Authors: Elena V. Stepanova; A. O. Maksimov;We have developed a technique and a programming-computing suite (PCS) to estimate the effect of equipment reliability indices, schedules, and regular overhaul scopes on reliability and efficiency of combined heat and power plants (CHPPs). We describe the approach to predict heat and electric loads for the investigated CHPP operation period, taking into account the features of the power cogeneration. We performed optimization studies of two operation periods (different in overhaul resources) for an industrial-heating CHPP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20185802014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20185802014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Kuan Zhang; Bin Zhou; Canbing Li; Nikolai Voropai; Jiayong Li; Wentao Huang; Tao Wang;Abstract Low renewable energy source (RES) accommodation and energy utilization efficiency impose great challenge to reliable energy supplies for rural residents. This paper proposes an optimal coordinated multi-energy conversion and management framework with a biogas-dominated hybrid renewable microgrid for multi-carrier energy supplies in off-grid remote areas. In this framework, multi-energy multi-timeframe couplings among biomass and other renewables are modeled based on biogas digesting thermodynamics for the coordinated interaction among electricity, biogas and thermal energy carriers, and a sustainable energy hub is formulated for mapping various renewables into diversified energy loads. The proposed energy hub can facilitate mitigating the fluctuating outputs of RES by harvesting hydro-wind-solar energies into the form of biogas, and an evaluation model is proposed based on hydrodynamic networking mechanisms to calculate the state of energy (SOE) in the biogas storage. Furthermore, a hierarchical multi-energy management strategy is presented to dynamically optimize the production, conversion, storage and consumption of multi-carrier energy flows for system energy-efficiency enhancement. Case studies on a stand-alone microgrid demonstration validate that the biogas yield can be improved by 31.75% with digesting thermodynamic effects, and the battery degradation cost can be reduced by at least 22.63% considering the SOE of biogas storage with hydrodynamic effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:NSERCNSERCAuthors: Yiyang Chen; Rogemar Mamon; Fabio Spagnolo; Nicola Spagnolo;doi: 10.1002/sd.2561
AbstractThe object of this paper is to investigate the dynamic causal relationship between economic growth and renewable energy in Canada. The causal relationship is examined under the neoclassical production function framework. We employed a panel autoregressive distributed lag model controlling for different states of the economy by incorporating a dummy variable, which indicates the economic peak and trough. The data set consists of annual real GDP, capital formation, labor, and electricity generation by renewables for nine Canadian provinces covering from 1981 to 2015. The empirical results find that there is a unidirectional causality from renewable energy to economic growth in the long run. In the short run, a unidirectional causality going from renewable energy to economic growth only during the expansion period is observed. Our study suggests that renewable energy policies should be designed and implemented in a way that takes into account the nonlinear relationship between renewable energy and economic growth. This could involve promoting the development and deployment of renewable energy sources as part of their economic stimulus packages during economic upturns.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26410Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26410Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Pleiades Publishing Ltd Authors: L. A. Bol’shov;The main aspects limiting the widespread development of nuclear energy—the consequences of possible severe accidents and the problem of radioactive waste management—are considered. It is shown that modern computational tools and digital technologies can successfully solve the problems of substantiating and ensuring the safety of nuclear facilities, including modeling the states and processes occurring in a reactor installation, and the entire complex of nuclear power plant (NPP) systems, the spread of contaminants in emergency situations, the choice and justification of solutions on decommissioning nuclear and radiation hazardous facilities, and the disposal of radioactive waste (RW).
Herald of the Russia... arrow_drop_down Herald of the Russian Academy of SciencesArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1019331620040012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Herald of the Russia... arrow_drop_down Herald of the Russian Academy of SciencesArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1019331620040012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Publisher:MDPI AG Ejigayehu Teshome; Tilahun A. Teka; Ruchira Nandasiri; Jyoti Ranjan Rout; Difo Voukang Harouna; Tessema Astatkie; Markos Makiso Urugo;Fruits are commonly used, fresh or processed, to prepare different industrial products with superior nutritional and health-promoting properties. Currently, the demand for processed fruit products has motivated the rapid growth of the fruit processing industries, persuading them to produce an enormous amount of by-products with less utilization. Furthermore, people's shifting dietary habits and lack of awareness of nutritional properties result in an avoidable load of fruit by-products. The knowledge of the value of by-products urges exploration with proper documentation, emphasizing the health benefits of some such products. Hence, this review is prepared by carefully analyzing the recent literature on industrial applications of fruit by-products and their nutritional and health-promoting properties. The use of fruit by-products in food industries for various purposes has been reported in the past and has been reviewed and described here. Fruit by-products are a good source of nutrients and bioactive components, including polyphenols, dietary fibers, and vitamins, implying that they could have an important role for novel, value-added functional food properties. Furthermore, fruit by-products are used as the substrate for the production of organic acids, essential oils, enzymes, fuel, biodegradable packaging materials, and preservatives.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202302.0481.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202302.0481.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetPaul Zagamé; Adam Hawkes; Felix Neuner; Marc Vielle; Elisa Delpiazzo; Elisa Delpiazzo; Elisa Delpiazzo; Alessia Elia; Patrick Plötz; Arnaud Fougeyrollas; Annela Anger-Kraavi; Pierre Le Mouel; Alessandro Chiodi; Maurizio Gargiulo; Jorge Moreno; Alexandros Nikas; Sara Giarola; Alexandre C. Köberle; Andrea Herbst; Haris Doukas; I. Sognnaes; Neil Grant; Joeri Rogelj; Joeri Rogelj; Ha Bui; Ben McWilliams; Sigit Perdana; Konstantinos Koasidis; Lorenza Campagnolo; Lorenza Campagnolo; Lorenza Campagnolo; Rocco De Miglio; Baptiste Boitier; Georg Zachmann; Glen P. Peters; Dirk-Jan van de Ven; Andrey Kolpakov; Gabriele Cassetti; Shivika Mittal; Ajay Gambhir;Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 60visibility views 60 download downloads 82 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu