- home
- Search
- Energy Research
- 2016-2025
- Closed Access
- Embargo
- chemical sciences
- Energy Research
- 2016-2025
- Closed Access
- Embargo
- chemical sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCChunbao (Charles) Xu; Chunbao (Charles) Xu; Shanghuan Feng; Gang Chen; An Li; Zhongshun Yuan; Takashi Kuboki; Tao Shui; Hengfu Shui;Abstract In this study, crude cellulose derived from cornstalk, after bleaching, was used as raw material for the synthesis of sodium carboxymethyl cellulose (CMC) by reacting with the cellulose with NaOH and chloroacetic acid at 75 °C for 1.5 h. Effects of alkali dosage, concentration of chloroacetic acid on the physical and chemical properties of the CMC products were investigated. It was revealed that the reactants alkali reagent/chloroacetic acid/cellulose at the molar ratio of 4.6:2.8:1and 4:2.5:1, or at the molar ratio of NaOH/ClCH 2 COOH ≈1.6–1.64, resulted in CMC products of relatively high water solubility. The viscosity-average molecular weight M v of these two CMC products obtained at molar ratios of 4.0:2.5:1 and 4.6:2.8:1 is in the range of 1.94 × 10 4 –2.48 × 10 4 g mol −1 , and the average DS of the two products are 0.57 and 0.85, respectively. As the solute concentration is above 2 wt%, the viscosity of the CMC-water solution exhibits nonlinear (exponential) increasing with increasing the solute concentration (typical of non-Newton fluids).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fangxuan Yi; Qiyao Guo; Wei He; Qunwei Tang; Jialong Duan;Wide‐bandgap (WBG) perovskite solar cells (PSCs) are acknowledged as promising candidates for tandem solar cells and building photovoltaics. It is well known that cesium‐based all‐inorganic halide WBG perovskites possess the comparable optoelectronic properties as the organic–inorganic counterparts, but exhibit superior thermal stability. Among them, CsPbIBr2 is considered a feasible material for tandem solar cells after balancing the bandgap and stability of the inorganic perovskite. However, CsPbIBr2 PSCs are often subjected to drastic interfacial charge recombination especially in carbon‐based device structure derived from the chemical bonding defects (i.e., uncoordinated Pb2+) naked on CsPbIBr2 soft lattice, which dramatically limits overall efficiency of CsPbIBr2 WBG PSCs. Herein, a trimethyl ammonium salt hexyltrimethylammonium bromide is presented for CsPbIBr2/carbon interfacial modification. Benefiting from the −N+(CH3)3 passivation effect and −C6H13 hydrophobic alkyl chain, the optimal device with highly smooth morphology and sufficient charge extraction exhibits a champion power conversion efficiency of 11.24% and improved long‐term stability with 99.7% and 79.7% efficiency retention under dry air atmosphere and continuous 85 °C thermal stress, indicating the valuable potential application of the lattice solidified CsPbIBr2 WBG PSCs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Miyuki Sakakura; Yasuhiro Suzuki; Takayuki Yamamoto; Yuta Yamamoto; Munekazu Motoyama; Yasutoshi Iriyama;Interfacial resistance at electrode‐high Li+ conductive solid electrolytes must be reduced well to develop high‐power all‐solid‐state batteries using oxide‐based solid electrolytes (Ox‐SSBs). Herein, crystalline electrode films of LiCoO2 (LCO) are formed on a high Li+ conductive crystalline‐glass solid electrolyte sheet, Li1.3Al0.3Ti2(PO4)3 (LATP) (σ25 °C = 1 × 10−4 S cm−1), at room temperature by aerosol deposition (AD), and the effects of the annealing temperature on the interfacial resistivities (Rint) at the LCO/LATP are investigated. The Rint visibly increases by annealing over 500 °C with the growth of Co3O4 as a reactant. In contrast, Rint is reduced to ≈100 Ω cm2 by low‐temperature annealing at 250–350 °C due to superior contact through the structural rearrangement of an artificial metastable interface formed by the AD. These results are applied to bulk‐type Ox‐SSB, Li/Li7La3Zr2O12(LLZ)/LCO–LATP, and our best Ox‐SSB delivers a discharge capacity of 100 mA cm−2 at 100 °C.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Lan Xiao; Zhengchun Wang; Tong Wu; Pingli Qin; Xueli Yu; Lun Xiong; Liang Ma; Haixia Li; Xiangbai Chen;A template‐agent can affect defect formation as well as influence interface properties, due to the rapid growth of perovskite film from the solution. Herein, diethylammonium iodide (DAI) is used as an effective template‐agent to control the perovskite crystallization during preparation. It is found that a very small amount of DAI in chlorobenzene (CB) can slow down the perovskite growth of the CH3NH3PbI3 (MAPbI3) film with more large grain size and compacted crystal‐grains resulting in the lesser grain boundaries (GBs) in favor of carrier transport in perovskite solar cells (PSCs). Moreover, some redundant PbI2 can be digested to form DA2PbI4. One part of DA2PbI4 can form the sub‐grains with the composition of (DA2PbI4)0.2(PbI2)0.8 to passivate the GB defects, and other part can cover the surface to passivate the surface defects in large MAPbI3 grains. Using an optimized DAI concentration of 0.5 mg mL−1 in CB solution, the corrsponding MAPbI3 PSC achieves an increased power conversion efficiency of 20.31% with suppressed current–voltage hysteresis. This DAI passivation strategy provides a simple approach to effectively assist the grain‐growth for improved device performance.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Pleiades Publishing Ltd Olga V, Morozova; Irina S, Vasil'eva; Galina P, Shumakovich; Elena A, Zaitseva; Alexander I, Yaropolov;pmid: 37069119
Deep eutectic solvents (DESs) are an alternative to traditional organic solvents and ionic liquids and meet the requirements of "green" chemistry. They are easy to prepare using low-cost constituents, are non-toxic and biodegradable. The review analyzes literature on the use of DES in various fields of biotechnology, provides data on the types of DESs, methods for their preparation, and properties. The main areas of using DESs in biotechnology include extraction of physiologically active substances from natural resources, pretreatment of lignocellulosic biomass to improve enzymatic hydrolysis of cellulose, production of bioplastics, as well as a reaction medium for biocatalytic reactions. The aim of this review is to summarize available information on the use of new solvents for biotechnological purposes.
Biochemistry (Moscow... arrow_drop_down Biochemistry (Moscow)Article . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0006297923140092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biochemistry (Moscow... arrow_drop_down Biochemistry (Moscow)Article . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0006297923140092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mehrdad Mashkour; Mehrdad Mashkour; Mahdi Mashkour; Mostafa Rahimnejad; Francesca Soavi;Abstract Economically harvesting energy from a microbial fuel cell (MFC), increasing its electrical power production, and developing its role as a practical energy supply, needs a low-cost and high-performance design of the MFC compartments. According to this strategy, a novel monolithic membrane electrode assembly (MEA) was fabricated and evaluated as an air–cathode in a single-chamber MFC (SCMFC). The MEA was made of bacterial cellulose (BC), conductive multi-walled carbon nanotubes (CNT), and nano-zycosil (NZ). BC, as a nano-celluloses with oxygen barrier property, can maintain anaerobic conditions for the anode compartment. Binder-less CNT coating on BC avoids costly binders such as poly-tetra fluoro ethylene (PTFE) and Nafion and decreases the MEA charge transfer resistance. NZ, as a very cheap modifier, not only prevents the anolyte leakage but also provides more MEA’s active sites for the oxygen reduction reaction (ORR). The electrochemical performance of the MEA was compared to a PTFE- based gas diffusion electrode (GDE) in the SCMFC. The MEA cell provided a pulse power density of 1790 mW/m2, roughly twice as high as the pulse power density of GDE (920 mW/m2). SCMFC’s internal resistance decreased from 1.84 KΩ (with GDE) to 0.8 KΩ (with MEA). Also, the cell’s columbic efficiency increased from 4.2% (with GDE) to11.7% (with MEA). Additionally, the capacitance of the MEA (65 mF) was much higher than the value for GDE (0.73 mF). Thus, the MEA compared to the GDE showed higher performance in the SCMFC for electricity generation and wastewater treatment at a lower cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Meisheng Han; Yongbiao Mu; Jie Yu;SnOx attracts considerable attention as an anode of lithium‐ion batteries (LIBs) because of its high theoretical capacity. However, SnOx suffers from poor cyclability and rate capability caused by large volume change upon cycling and low conductivity, which severely limits its application for LIBs. Herein, a nanocomposite of Sn/SnO2/C is synthesized for the first time under an elevated pressure originated from the pyrolysis of dimethyltin oxide in a sealed vessel. The Sn/SnO2/C nanocomposite consists of a homogeneous dispersion of Sn and SnO2 nanocrystals (<10 nm) into the carbon matrix, which endows it with an enhanced lithium storage performance. The Sn/SnO2/C nanocomposite delivers an excellent cyclability (0.025% capacity loss per cycle during 1000 cycles at 1 A g−1) with an improved rate performance (243.8 mAh g−1 at 5 A g−1).
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Wenzheng Li; Zhenglei Yin; Zeyu Gao; Gongwei Wang; Zhen Li; Fengyuan Wei; Xing Wei; Hanqing Peng; Xingtao Hu; Li Xiao; Juntao Lu; Lin Zhuang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01092-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu136 citations 136 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01092-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV J. Shanthi Sravan; S. Venkata Mohan; S. Venkata Mohan; Y. V. Rami Reddy; Masapogu Yellappa; Omprakash Sarkar;pmid: 30928826
Anode with good electrocatalytic capabilities is more specifically required to reduce the ohimic losses during microbial fuel cell (MFC) operation. Highly conductive polymers viz., Polyaniline (PANi) and Polyaniline/Carbon nanotube (PANi/CNT) composite were prepared by in situ oxidative chemical polymerization method. Anodes were fabricated independently by coating PANi and CNT/PANi composites on the surface of SSM. The fabricated electrodes were evaluated as anode against stainless steel mess (SSM) as cathode during MFC operation. Maximum bioelectricity generation was observed in SSM-PANi/CNT-anode with power density of 48 mW/m2 and COD removal efficiency of 80% compared with SSM-PANi-anode (38 mW/m2; 65%) and SSM-anode (28 mW/m2; 58%). Bioelectrochemical characterization of the electrode materials using cyclic voltammetry and electrochemical impedance spectroscopy showed high electrocatalytic activity of PANi/CNT composite electrode. The study concluded the efficiency of PANi/CNT composite electrodes as bioanode in operation of MFCs towards achieving increased bioelectricity production along with wastewater treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCChunbao (Charles) Xu; Chunbao (Charles) Xu; Shanghuan Feng; Gang Chen; An Li; Zhongshun Yuan; Takashi Kuboki; Tao Shui; Hengfu Shui;Abstract In this study, crude cellulose derived from cornstalk, after bleaching, was used as raw material for the synthesis of sodium carboxymethyl cellulose (CMC) by reacting with the cellulose with NaOH and chloroacetic acid at 75 °C for 1.5 h. Effects of alkali dosage, concentration of chloroacetic acid on the physical and chemical properties of the CMC products were investigated. It was revealed that the reactants alkali reagent/chloroacetic acid/cellulose at the molar ratio of 4.6:2.8:1and 4:2.5:1, or at the molar ratio of NaOH/ClCH 2 COOH ≈1.6–1.64, resulted in CMC products of relatively high water solubility. The viscosity-average molecular weight M v of these two CMC products obtained at molar ratios of 4.0:2.5:1 and 4.6:2.8:1 is in the range of 1.94 × 10 4 –2.48 × 10 4 g mol −1 , and the average DS of the two products are 0.57 and 0.85, respectively. As the solute concentration is above 2 wt%, the viscosity of the CMC-water solution exhibits nonlinear (exponential) increasing with increasing the solute concentration (typical of non-Newton fluids).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fangxuan Yi; Qiyao Guo; Wei He; Qunwei Tang; Jialong Duan;Wide‐bandgap (WBG) perovskite solar cells (PSCs) are acknowledged as promising candidates for tandem solar cells and building photovoltaics. It is well known that cesium‐based all‐inorganic halide WBG perovskites possess the comparable optoelectronic properties as the organic–inorganic counterparts, but exhibit superior thermal stability. Among them, CsPbIBr2 is considered a feasible material for tandem solar cells after balancing the bandgap and stability of the inorganic perovskite. However, CsPbIBr2 PSCs are often subjected to drastic interfacial charge recombination especially in carbon‐based device structure derived from the chemical bonding defects (i.e., uncoordinated Pb2+) naked on CsPbIBr2 soft lattice, which dramatically limits overall efficiency of CsPbIBr2 WBG PSCs. Herein, a trimethyl ammonium salt hexyltrimethylammonium bromide is presented for CsPbIBr2/carbon interfacial modification. Benefiting from the −N+(CH3)3 passivation effect and −C6H13 hydrophobic alkyl chain, the optimal device with highly smooth morphology and sufficient charge extraction exhibits a champion power conversion efficiency of 11.24% and improved long‐term stability with 99.7% and 79.7% efficiency retention under dry air atmosphere and continuous 85 °C thermal stress, indicating the valuable potential application of the lattice solidified CsPbIBr2 WBG PSCs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Miyuki Sakakura; Yasuhiro Suzuki; Takayuki Yamamoto; Yuta Yamamoto; Munekazu Motoyama; Yasutoshi Iriyama;Interfacial resistance at electrode‐high Li+ conductive solid electrolytes must be reduced well to develop high‐power all‐solid‐state batteries using oxide‐based solid electrolytes (Ox‐SSBs). Herein, crystalline electrode films of LiCoO2 (LCO) are formed on a high Li+ conductive crystalline‐glass solid electrolyte sheet, Li1.3Al0.3Ti2(PO4)3 (LATP) (σ25 °C = 1 × 10−4 S cm−1), at room temperature by aerosol deposition (AD), and the effects of the annealing temperature on the interfacial resistivities (Rint) at the LCO/LATP are investigated. The Rint visibly increases by annealing over 500 °C with the growth of Co3O4 as a reactant. In contrast, Rint is reduced to ≈100 Ω cm2 by low‐temperature annealing at 250–350 °C due to superior contact through the structural rearrangement of an artificial metastable interface formed by the AD. These results are applied to bulk‐type Ox‐SSB, Li/Li7La3Zr2O12(LLZ)/LCO–LATP, and our best Ox‐SSB delivers a discharge capacity of 100 mA cm−2 at 100 °C.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Lan Xiao; Zhengchun Wang; Tong Wu; Pingli Qin; Xueli Yu; Lun Xiong; Liang Ma; Haixia Li; Xiangbai Chen;A template‐agent can affect defect formation as well as influence interface properties, due to the rapid growth of perovskite film from the solution. Herein, diethylammonium iodide (DAI) is used as an effective template‐agent to control the perovskite crystallization during preparation. It is found that a very small amount of DAI in chlorobenzene (CB) can slow down the perovskite growth of the CH3NH3PbI3 (MAPbI3) film with more large grain size and compacted crystal‐grains resulting in the lesser grain boundaries (GBs) in favor of carrier transport in perovskite solar cells (PSCs). Moreover, some redundant PbI2 can be digested to form DA2PbI4. One part of DA2PbI4 can form the sub‐grains with the composition of (DA2PbI4)0.2(PbI2)0.8 to passivate the GB defects, and other part can cover the surface to passivate the surface defects in large MAPbI3 grains. Using an optimized DAI concentration of 0.5 mg mL−1 in CB solution, the corrsponding MAPbI3 PSC achieves an increased power conversion efficiency of 20.31% with suppressed current–voltage hysteresis. This DAI passivation strategy provides a simple approach to effectively assist the grain‐growth for improved device performance.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Pleiades Publishing Ltd Olga V, Morozova; Irina S, Vasil'eva; Galina P, Shumakovich; Elena A, Zaitseva; Alexander I, Yaropolov;pmid: 37069119
Deep eutectic solvents (DESs) are an alternative to traditional organic solvents and ionic liquids and meet the requirements of "green" chemistry. They are easy to prepare using low-cost constituents, are non-toxic and biodegradable. The review analyzes literature on the use of DES in various fields of biotechnology, provides data on the types of DESs, methods for their preparation, and properties. The main areas of using DESs in biotechnology include extraction of physiologically active substances from natural resources, pretreatment of lignocellulosic biomass to improve enzymatic hydrolysis of cellulose, production of bioplastics, as well as a reaction medium for biocatalytic reactions. The aim of this review is to summarize available information on the use of new solvents for biotechnological purposes.
Biochemistry (Moscow... arrow_drop_down Biochemistry (Moscow)Article . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0006297923140092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biochemistry (Moscow... arrow_drop_down Biochemistry (Moscow)Article . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s0006297923140092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mehrdad Mashkour; Mehrdad Mashkour; Mahdi Mashkour; Mostafa Rahimnejad; Francesca Soavi;Abstract Economically harvesting energy from a microbial fuel cell (MFC), increasing its electrical power production, and developing its role as a practical energy supply, needs a low-cost and high-performance design of the MFC compartments. According to this strategy, a novel monolithic membrane electrode assembly (MEA) was fabricated and evaluated as an air–cathode in a single-chamber MFC (SCMFC). The MEA was made of bacterial cellulose (BC), conductive multi-walled carbon nanotubes (CNT), and nano-zycosil (NZ). BC, as a nano-celluloses with oxygen barrier property, can maintain anaerobic conditions for the anode compartment. Binder-less CNT coating on BC avoids costly binders such as poly-tetra fluoro ethylene (PTFE) and Nafion and decreases the MEA charge transfer resistance. NZ, as a very cheap modifier, not only prevents the anolyte leakage but also provides more MEA’s active sites for the oxygen reduction reaction (ORR). The electrochemical performance of the MEA was compared to a PTFE- based gas diffusion electrode (GDE) in the SCMFC. The MEA cell provided a pulse power density of 1790 mW/m2, roughly twice as high as the pulse power density of GDE (920 mW/m2). SCMFC’s internal resistance decreased from 1.84 KΩ (with GDE) to 0.8 KΩ (with MEA). Also, the cell’s columbic efficiency increased from 4.2% (with GDE) to11.7% (with MEA). Additionally, the capacitance of the MEA (65 mF) was much higher than the value for GDE (0.73 mF). Thus, the MEA compared to the GDE showed higher performance in the SCMFC for electricity generation and wastewater treatment at a lower cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Meisheng Han; Yongbiao Mu; Jie Yu;SnOx attracts considerable attention as an anode of lithium‐ion batteries (LIBs) because of its high theoretical capacity. However, SnOx suffers from poor cyclability and rate capability caused by large volume change upon cycling and low conductivity, which severely limits its application for LIBs. Herein, a nanocomposite of Sn/SnO2/C is synthesized for the first time under an elevated pressure originated from the pyrolysis of dimethyltin oxide in a sealed vessel. The Sn/SnO2/C nanocomposite consists of a homogeneous dispersion of Sn and SnO2 nanocrystals (<10 nm) into the carbon matrix, which endows it with an enhanced lithium storage performance. The Sn/SnO2/C nanocomposite delivers an excellent cyclability (0.025% capacity loss per cycle during 1000 cycles at 1 A g−1) with an improved rate performance (243.8 mAh g−1 at 5 A g−1).
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Wenzheng Li; Zhenglei Yin; Zeyu Gao; Gongwei Wang; Zhen Li; Fengyuan Wei; Xing Wei; Hanqing Peng; Xingtao Hu; Li Xiao; Juntao Lu; Lin Zhuang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01092-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu136 citations 136 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01092-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV J. Shanthi Sravan; S. Venkata Mohan; S. Venkata Mohan; Y. V. Rami Reddy; Masapogu Yellappa; Omprakash Sarkar;pmid: 30928826
Anode with good electrocatalytic capabilities is more specifically required to reduce the ohimic losses during microbial fuel cell (MFC) operation. Highly conductive polymers viz., Polyaniline (PANi) and Polyaniline/Carbon nanotube (PANi/CNT) composite were prepared by in situ oxidative chemical polymerization method. Anodes were fabricated independently by coating PANi and CNT/PANi composites on the surface of SSM. The fabricated electrodes were evaluated as anode against stainless steel mess (SSM) as cathode during MFC operation. Maximum bioelectricity generation was observed in SSM-PANi/CNT-anode with power density of 48 mW/m2 and COD removal efficiency of 80% compared with SSM-PANi-anode (38 mW/m2; 65%) and SSM-anode (28 mW/m2; 58%). Bioelectrochemical characterization of the electrode materials using cyclic voltammetry and electrochemical impedance spectroscopy showed high electrocatalytic activity of PANi/CNT composite electrode. The study concluded the efficiency of PANi/CNT composite electrodes as bioanode in operation of MFCs towards achieving increased bioelectricity production along with wastewater treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu