- home
- Search
Filters
Clear All- Energy Research
- nano-technology
- 7. Clean energy
- 3. Good health
- Russian
- Energy Research
- nano-technology
- 7. Clean energy
- 3. Good health
- Russian
description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Международный научно-исследовательский журнал Authors: D H Vu; V V Sleptsov;The basic elements of design SIIT are electrode materials that have the function of storing electric energy and high surface current collecting elements by transmitting this energy to the load. Therefore, the first task is to choose a design SIIT design and technology of electrode materials. Another fundamental element is the electrolyte, ensuring the formation of the electrical double layer on the surface of the highly electrode materials and the transfer of electric charge carriers within the electrolytic cell. It is proposed to use a polymer electrolyte, which in comparison with aqueous electrolyte has a significantly higher operating voltage. In addition to the electrolyte composition and its manufacturing technology to develop the technology necessary to impregnate the electrolyte electrode materials that will ensure maximum use of high surface area electrode materials. The third element is the SIIT housing and electrical contacts to ensure his switching to other functional units of electronic equipment (REA), including the management of SIIT, which performs the function of monitoring and optimization of its functioning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18454/irj.2015.42.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18454/irj.2015.42.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:Zenodo Authors: VolobuevI.A.; Bulat P.V.; ProdanN.V.;The problem of increase of the unit power on the shaft of an energy microturbine is of current interest. One of the problems is the small single unit power of microturbines, limited by the low capacity of gas-dynamic air bearings. The problem could be solved by replacing gas-dynamic bearings with hybrid ones with a higher load-bearing capacity. Hybrid bearings use self-aligning turning segments and forcing gas into the lubricating layer. The scientific result of the work is the method of designing grooves that distributes gas, the shape of which repeats the pressure isoline on the segment’s surface when the microturbine is operating at the rated rotation speed. Method is based on solving Reynolds equations for a thin lubricating layer at the grooves. The developed system of grooves provides static stability of the segment in stationary modes and dynamic in transient modes, vibration suppression, automatic response to changes in load and speed. The calculation method allows finding the optimum thickness of the lubricant layer for a given accuracy of shaft and segment manufacture. It is shown that the load-bearing capacity is maximal when the resultant forces act on a segment, and not between segments. Numerical calculations and experiments have shown that the developed hybrid bearing has a maximum bearing capacity at a given air flow rate for the power range on the shaft from 200 kW to 2000 kW, with a load on the shaft up to 300 kg and a speed of up to 100.000 rpm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1343409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1343409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Publisher:Zenodo Authors: Kuznetsov K.I.; Sukhikh A.A.; Granchenko P.P.; Skorodumov S.V.;The objective of the work is to construct the equation of state of octafluorocyclobutane to allow high metrological level of calculation of cycles and processes of ORC based power plants. This objective was achieved by developing an equation of state in the form of a polynomial dependence of the compressibility coefficient of the virial type on the reduced density and temperature. To construct the equation of state, experimental measurements in the superheated steam area and in the supercritical steam area were used. New experimental measurements on the density of octafluorocyclobutane are used to obtain the equation of state in the pressure range from 1 MPa up to 10 MPa and from 100°C to 450°C. The measurement uncertainty over the entire range was within 0.1–0.25%. Eleven equivalent equations of state were obtained with a mean square deviation of 0.255% in density with 25 coefficients. The most significant result is the extension of the existing database of the basic thermodynamic properties of octafluorocyclobutane what allow the use of this substance in the entire range of operation parameters of power plants. The significance of the obtained results is in the equation of state what confirmed the possibility of using the REFPROP 10.0 database outside the previously guaranteed temperature range (350°C) for calculating properties, except for heat capacities for the calculation of which a new equation of state is proposed. The experimentally justified equation of state allows to perform a design of cycles and processes of power plants based on octafluorocyclobutane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Zenodo Authors: V. Postolati; V. Berzan; O. Chalbash;Factors affecting the production of electricity by photovoltaic (PV) power plants are studied. It is worth noting that reducing the shade and orientation to the sun are effective solutions for an increase in the production of electricity by these PV plants. A brief overview of the features of stationary installations and installations in the tracking of the sun is presented. The purpose of the paper is to justify, develop, and describe a generalized approach to analyzing the operation and methods of tracking the sun by the platforms with photovoltaic modules so as to increase the specific energy density obtained from a given surface of the photovoltaic installation. A concept is formulated and the generalized mathematical model is developed for different photovoltaic plants with fixed and mobile platforms, taking into account the shading effect of photovoltaic modules mounted on different platforms. Based on the decomposition concept, the optimization problem is solved on the criterion of the maximum value of the electric energy and the occupation of the smallest area of the site for a PV plants. A software for calculating the electricity produced by PV plants with stationary and mobile platforms was elaborated according to their location on the land meant for a certain PV plants. Specific electricity production kWh / (m2*day) indices were determined for different PV plants, taking into account the shading factor. It was found that the PV plants equipped with three-coordinate orientation systems can produce the largest amount of energy, in addition, providing higher energy performance indices compared to those of other types of PV plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Международный научно-исследовательский журнал Authors: D H Vu; V V Sleptsov;The basic elements of design SIIT are electrode materials that have the function of storing electric energy and high surface current collecting elements by transmitting this energy to the load. Therefore, the first task is to choose a design SIIT design and technology of electrode materials. Another fundamental element is the electrolyte, ensuring the formation of the electrical double layer on the surface of the highly electrode materials and the transfer of electric charge carriers within the electrolytic cell. It is proposed to use a polymer electrolyte, which in comparison with aqueous electrolyte has a significantly higher operating voltage. In addition to the electrolyte composition and its manufacturing technology to develop the technology necessary to impregnate the electrolyte electrode materials that will ensure maximum use of high surface area electrode materials. The third element is the SIIT housing and electrical contacts to ensure his switching to other functional units of electronic equipment (REA), including the management of SIIT, which performs the function of monitoring and optimization of its functioning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18454/irj.2015.42.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18454/irj.2015.42.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:Zenodo Authors: VolobuevI.A.; Bulat P.V.; ProdanN.V.;The problem of increase of the unit power on the shaft of an energy microturbine is of current interest. One of the problems is the small single unit power of microturbines, limited by the low capacity of gas-dynamic air bearings. The problem could be solved by replacing gas-dynamic bearings with hybrid ones with a higher load-bearing capacity. Hybrid bearings use self-aligning turning segments and forcing gas into the lubricating layer. The scientific result of the work is the method of designing grooves that distributes gas, the shape of which repeats the pressure isoline on the segment’s surface when the microturbine is operating at the rated rotation speed. Method is based on solving Reynolds equations for a thin lubricating layer at the grooves. The developed system of grooves provides static stability of the segment in stationary modes and dynamic in transient modes, vibration suppression, automatic response to changes in load and speed. The calculation method allows finding the optimum thickness of the lubricant layer for a given accuracy of shaft and segment manufacture. It is shown that the load-bearing capacity is maximal when the resultant forces act on a segment, and not between segments. Numerical calculations and experiments have shown that the developed hybrid bearing has a maximum bearing capacity at a given air flow rate for the power range on the shaft from 200 kW to 2000 kW, with a load on the shaft up to 300 kg and a speed of up to 100.000 rpm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1343409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1343409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Publisher:Zenodo Authors: Kuznetsov K.I.; Sukhikh A.A.; Granchenko P.P.; Skorodumov S.V.;The objective of the work is to construct the equation of state of octafluorocyclobutane to allow high metrological level of calculation of cycles and processes of ORC based power plants. This objective was achieved by developing an equation of state in the form of a polynomial dependence of the compressibility coefficient of the virial type on the reduced density and temperature. To construct the equation of state, experimental measurements in the superheated steam area and in the supercritical steam area were used. New experimental measurements on the density of octafluorocyclobutane are used to obtain the equation of state in the pressure range from 1 MPa up to 10 MPa and from 100°C to 450°C. The measurement uncertainty over the entire range was within 0.1–0.25%. Eleven equivalent equations of state were obtained with a mean square deviation of 0.255% in density with 25 coefficients. The most significant result is the extension of the existing database of the basic thermodynamic properties of octafluorocyclobutane what allow the use of this substance in the entire range of operation parameters of power plants. The significance of the obtained results is in the equation of state what confirmed the possibility of using the REFPROP 10.0 database outside the previously guaranteed temperature range (350°C) for calculating properties, except for heat capacities for the calculation of which a new equation of state is proposed. The experimentally justified equation of state allows to perform a design of cycles and processes of power plants based on octafluorocyclobutane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Zenodo Authors: V. Postolati; V. Berzan; O. Chalbash;Factors affecting the production of electricity by photovoltaic (PV) power plants are studied. It is worth noting that reducing the shade and orientation to the sun are effective solutions for an increase in the production of electricity by these PV plants. A brief overview of the features of stationary installations and installations in the tracking of the sun is presented. The purpose of the paper is to justify, develop, and describe a generalized approach to analyzing the operation and methods of tracking the sun by the platforms with photovoltaic modules so as to increase the specific energy density obtained from a given surface of the photovoltaic installation. A concept is formulated and the generalized mathematical model is developed for different photovoltaic plants with fixed and mobile platforms, taking into account the shading effect of photovoltaic modules mounted on different platforms. Based on the decomposition concept, the optimization problem is solved on the criterion of the maximum value of the electric energy and the occupation of the smallest area of the site for a PV plants. A software for calculating the electricity produced by PV plants with stationary and mobile platforms was elaborated according to their location on the land meant for a certain PV plants. Specific electricity production kWh / (m2*day) indices were determined for different PV plants, taking into account the shading factor. It was found that the PV plants equipped with three-coordinate orientation systems can produce the largest amount of energy, in addition, providing higher energy performance indices compared to those of other types of PV plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu