- home
- Search
- Energy Research
- Open Access
- Open Source
- Embargo
- basic medicine
- Energy Research
- Open Access
- Open Source
- Embargo
- basic medicine
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:ANR | VIRGOANR| VIRGOAuthors:
Mathias, Jean-Denis; Anderies, J.M.; Janssen, M.A.;Mathias, Jean-Denis
Mathias, Jean-Denis in OpenAIREAbstractThe planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:MDPI AG Authors: Koo, Kyung; Patten, Bernard; Madden, Marguerite;doi: 10.3390/f6041208
Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.
Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors:
Boer, Joop de; Boer, Joop de
Boer, Joop de in OpenAIRE
Aiking, Harry; Aiking, Harry
Aiking, Harry in OpenAIREUsing data from Eurobarometer 83.4, this study combines the two branches of research that address climate-related and biodiversity-related opinions and actions of individuals in the EU. The literature shows that the differences between climate-related and biodiversity-related policies correspond, at an individual level, to a person's basic attitudes towards environmental protection and towards nature protection, respectively. The contribution of this study is to demonstrate how these attitudes can influence behavior that has environmental repercussions for both issues, such as food consumption practices. The analysis focused on two Eurobarometer questions about buying local and seasonal food (to fight climate change) and about buying organic and local food (to protect biodiversity and nature). The results of two multinomial regression analyses, separately in Northwestern European countries and Eastern and Southern European countries, demonstrated that climate-related and biodiversity-related attitudes were, independent of each other, related to the adoption of these purchase behaviors. The results may support Europe's new Farm to Fork (F2F) strategy and indicate that improving food consumption practices can enable individuals to better play their part in fighting climate change and biodiversity loss simultaneously, which opens up interesting new perspectives for policymakers, businesses and consumers.
Food Quality and Pre... arrow_drop_down Social Science Open Access RepositoryArticle . 2021Data sources: Social Science Open Access RepositoryFood Quality and PreferenceArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Food Quality and Pre... arrow_drop_down Social Science Open Access RepositoryArticle . 2021Data sources: Social Science Open Access RepositoryFood Quality and PreferenceArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:MDPI AG Authors:
Galba Maria de Campos-Takaki; Marta Cristina Freitas Silva; Ednaldo Ramos dos Santos; Antonio Ismael Inácio Cardoso; +1 AuthorsGalba Maria de Campos-Takaki
Galba Maria de Campos-Takaki in OpenAIRE
Galba Maria de Campos-Takaki; Marta Cristina Freitas Silva; Ednaldo Ramos dos Santos; Antonio Ismael Inácio Cardoso; Clarissa Izabel M. Lins;Galba Maria de Campos-Takaki
Galba Maria de Campos-Takaki in OpenAIREThis study investigated the potential of Rhizopus arrhizus UCP 402 for producing chitosan using corn steep liquor and honey as agroindustrial nitrogen and carbon sources. A complete factorial design was used to assess the improved biomass and chitosan production. The results were evaluated using Pareto charts (Statistica 7.0 software). The chitosan obtained was characterized by X-ray diffraction. The cristallinity index (IC), and infrared spectroscopy (FTIR) were used to evaluate the degree of deacetylation (DD %). The morphological aspects of the R. arrhizus were evaluated by measuring the diameter of the colonies by light microscopy. The results obtained showed higher biomass and chitosan yields (20.61 g/L and 29.3 mg/g), respectively, in the selected assays. The characterization of the macromolecular arrangement of chitosan showed a crystallinity index compatible with the literature, and the infrared peaks confirmed a degree of 86%. The experimental data obtained suggest that adding honey to corn steep liquor is a promising way to improve microbiological chitosan production.
Molecules arrow_drop_down MoleculesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1420-3049/17/5/4904/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1420-3049/17/5/4904/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Wiley Funded by:UKRI | EcoLowNOx: Auxiliary Comb...UKRI| EcoLowNOx: Auxiliary Combustion System for Efficient Combustion with Low-NOx emissions for Foundation IndustriesAuthors:
Mark E. Capron; Mark E. Capron
Mark E. Capron in OpenAIRE
Jim R. Stewart; Jim R. Stewart
Jim R. Stewart in OpenAIRE
Antoine de Ramon N’Yeurt; Michael D. Chambers; +10 AuthorsAntoine de Ramon N’Yeurt
Antoine de Ramon N’Yeurt in OpenAIRE
Mark E. Capron; Mark E. Capron
Mark E. Capron in OpenAIRE
Jim R. Stewart; Jim R. Stewart
Jim R. Stewart in OpenAIRE
Antoine de Ramon N’Yeurt; Michael D. Chambers; Jang K. Kim;Antoine de Ramon N’Yeurt
Antoine de Ramon N’Yeurt in OpenAIRE
Charles Yarish; Anthony T. Jones; Reginald B. Blaylock;Charles Yarish
Charles Yarish in OpenAIRE
Scott C. James; Scott C. James
Scott C. James in OpenAIRE
Rae Fuhrman; Martin T. Sherman; Don Piper;Rae Fuhrman
Rae Fuhrman in OpenAIRE
Graham Harris; Mohammed A. Hasan;Graham Harris
Graham Harris in OpenAIREUnless humanity achieves United Nations Sustainable Development Goals (SDGs) by 2030 and restores the relatively stable climate of pre-industrial CO2 levels (as early as 2140), species extinctions, starvation, drought/floods, and violence will exacerbate mass migrations. This paper presents conceptual designs and techno-economic analyses to calculate sustainable limits for growing high-protein seafood and macroalgae-for-biofuel. We review the availability of wet solid waste and outline the mass balance of carbon and plant nutrients passing through a hydrothermal liquefaction process. The paper reviews the availability of dry solid waste and dry biomass for bioenergy with CO2 capture and storage (BECCS) while generating Allam Cycle electricity. Sufficient wet-waste biomass supports quickly building hydrothermal liquefaction facilities. Macroalgae-for-biofuel technology can be developed and straightforwardly implemented on SDG-achieving high protein seafood infrastructure. The analyses indicate a potential for (1) 0.5 billion tonnes/yr of seafood; (2) 20 million barrels/day of biofuel from solid waste; (3) more biocrude oil from macroalgae than current fossil oil; and (4) sequestration of 28 to 38 billion tonnes/yr of bio-CO2. Carbon dioxide removal (CDR) costs are between 25–33% of those for BECCS with pre-2019 technology or the projected cost of air-capture CDR.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4972/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4972/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Pearce-Higgins, James;
Antao, Laura; Bates, Rachel;Antao, Laura
Antao, Laura in OpenAIRE
Bowgen, Katharine; +14 AuthorsBowgen, Katharine
Bowgen, Katharine in OpenAIREPearce-Higgins, James;
Antao, Laura; Bates, Rachel;Antao, Laura
Antao, Laura in OpenAIRE
Bowgen, Katharine; Bradshaw, Catherine; Duffield, Simon; Ffoulkes, Charles;Bowgen, Katharine
Bowgen, Katharine in OpenAIRE
Franco, Aldina; Geschke, J.; Gregory, Richard; Harley, Mike;Franco, Aldina
Franco, Aldina in OpenAIRE
Hodgson, Jenny; Jenkins, Rhosanna; Kapos, Val;Hodgson, Jenny
Hodgson, Jenny in OpenAIRE
Maltby, Katherine; Watts, Olly; Willis, Steve; Morecroft, Michael;Maltby, Katherine
Maltby, Katherine in OpenAIREhandle: 10138/341846
Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen Published in a Diamond OA journal 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Authors: Sanjay Dwivedi; Munna Singh;
Manish Tiwari; Manish Tiwari
Manish Tiwari in OpenAIRE
Rudra Deo Tripathi; +2 AuthorsRudra Deo Tripathi
Rudra Deo Tripathi in OpenAIRESanjay Dwivedi; Munna Singh;
Manish Tiwari; Manish Tiwari
Manish Tiwari in OpenAIRE
Rudra Deo Tripathi; Deepika Sharma; Prabodh Kumar Trivedi;Rudra Deo Tripathi
Rudra Deo Tripathi in OpenAIREdoi: 10.1111/pce.12138
pmid: 23700971
AbstractIrrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance‐Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 207 citations 207 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Li Zhang;
Jianhui Ruan; Zhe Zhang; Ziyu Qin; +4 AuthorsJianhui Ruan
Jianhui Ruan in OpenAIRELi Zhang;
Jianhui Ruan; Zhe Zhang; Ziyu Qin; Zhongyi Lei; Bofeng Cai; Shouyang Wang; Ling Tang;Jianhui Ruan
Jianhui Ruan in OpenAIRESummary: Chinese cities need independent but synergetic dual-carbon abatement roadmaps to mitigate climate change and achieve carbon neutrality. Using source-level data, we develop a time-series, full-scale emission inventory for all Chinese cities from 2005 to 2020, exploring associated heterogeneous and homogeneous patterns. We find that 31% of cities have had a significant carbon emission peak, with the main driver being carbon intensity reductions through efficiency gains and structural improvements. Despite discrepant emission levels and socioeconomic determinants, a uniform trajectory in emission changes exists across cities via four emission phases: growth of 8%–9% annually (95% confidence interval) before peaking; plateau and decline by 9%–13% for 5–7 years; and plain with slower declines. We project that if cities follow their early-peaked counterparts’ mitigation pathways, China will reach a carbon peak in 2026 at 13 Gt and carbon neutrality during 2051–2058, revealing the feasibility of Chinese climate goals and the importance of long-reaching, city-targeted planning. Science for society: China established its dual-carbon goals to achieve a carbon peak before 2030 and carbon neutrality by 2060. It is important for cities to identify their distinctive patterns and define individual dual-carbon roadmaps to achieve carbon neutrality in China. In this study, we conduct a carbon inventory for all Chinese cities from 2005 to 2020 to quantitatively define the emission phases in the process of carbon peak. We find that 31% of cities have had a significant carbon emission peak, with the main driver being carbon intensity reductions. A uniform trajectory in emission changes exists across cities, despite significant differences in emission levels and socioeconomic determinants. We project that if cities follow their early-peaked counterparts’ mitigation pathways, China could achieve its climate change goals ahead of the policy deadlines.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:
Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; +3 AuthorsJian Liao
Jian Liao in OpenAIRE
Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; Haomiao Zhang; Henri J. Dumont;Jian Liao
Jian Liao in OpenAIRE
Bo-Ping Han; Bo-Ping Han
Bo-Ping Han in OpenAIRENeurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie’s range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.
Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeAuthors: Leifsson, Christopher; Buras, Allan;
Klesse, Stefan; Baittinger, Claudia; +52 AuthorsKlesse, Stefan
Klesse, Stefan in OpenAIRELeifsson, Christopher; Buras, Allan;
Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna;Klesse, Stefan
Klesse, Stefan in OpenAIRE
Biondi, Franco; Stajić, Branko;Biondi, Franco
Biondi, Franco in OpenAIRE
Budeanu, Marius; Čada, Vojtěch; Cavin, Liam;Budeanu, Marius
Budeanu, Marius in OpenAIRE
Claessens, Hugues; Claessens, Hugues
Claessens, Hugues in OpenAIRE
Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew;Čufar, Katarina
Čufar, Katarina in OpenAIRE
Hansen, Jon Kehlet; Hartl, Claudia;Hansen, Jon Kehlet
Hansen, Jon Kehlet in OpenAIRE
Huang, Weiwei; Janda, Pavel; Jump, Alistair;Huang, Weiwei
Huang, Weiwei in OpenAIRE
Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander;Kazimirović, Marko
Kazimirović, Marko in OpenAIRE
Latte, Nicolas; Latte, Nicolas
Latte, Nicolas in OpenAIRE
Lebourgeois, François; Leuschner, Christoph;Lebourgeois, François
Lebourgeois, François in OpenAIRE
Longares, Luis; Longares, Luis
Longares, Luis in OpenAIRE
Martinez del Castillo, Edurne; Martinez del Castillo, Edurne
Martinez del Castillo, Edurne in OpenAIRE
Menzel, Annette; Menzel, Annette
Menzel, Annette in OpenAIRE
Motta, Renzo; Motta, Renzo
Motta, Renzo in OpenAIRE
Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil;Muffler-Weigel, Lena
Muffler-Weigel, Lena in OpenAIRE
Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel;Petritan, Any Mary
Petritan, Any Mary in OpenAIRE
Roibu, Cǎtǎlin-Constantin; Roibu, Cǎtǎlin-Constantin
Roibu, Cǎtǎlin-Constantin in OpenAIRE
Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias;Rubio-Cuadrado, Álvaro
Rubio-Cuadrado, Álvaro in OpenAIRE
Camarero, J. Julio; Svoboda, Miroslav;Camarero, J. Julio
Camarero, J. Julio in OpenAIRE
Toromani, Elvin; Trotsiuk, Volodymyr;Toromani, Elvin
Toromani, Elvin in OpenAIRE
van der Maaten-Theunissen, Marieke; van der Maaten-Theunissen, Marieke
van der Maaten-Theunissen, Marieke in OpenAIRE
van der Maaten, Ernst; Weigel, Robert;van der Maaten, Ernst
van der Maaten, Ernst in OpenAIRE
Wilmking, Martin; Wilmking, Martin
Wilmking, Martin in OpenAIRE
Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;Zlatanov, Tzvetan
Zlatanov, Tzvetan in OpenAIREpmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
