- home
- Search
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- 1. No poverty
- University of California System
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- 1. No poverty
- University of California System
description Publicationkeyboard_double_arrow_right Article , Other literature type 2015 United StatesPublisher:Springer Science and Business Media LLC Authors: Greenblatt, Jeffery; Shaheen, Susan, PhD;We review the history, current developments, projected future trends and environmental impacts of automated vehicles (AVs) and on-demand mobility, and explore potential synergies. Many automobile manufacturers and Google plan to release AVs between 2017 and 2020, with potential benefits including increased safety, more efficient road use, increased driver productivity and energy savings. Estimates of AV energy use and greenhouse gas (GHG) emissions range from an ~80 % or greater decrease to a threefold increase; however, we argue that net decreases are likely. On-demand mobility services exist in many cities around the world, with advances in mobile technology increasing their popularity. On-demand mobility can provide numerous transportation, land use, and environmental and social benefits, and users tend to decrease both vehicle ownership and annual vehicle distances traveled. Combining on-demand mobility and AVs may amplify adoption of both, and further lower energy use and GHG emissions through the use of small, efficient shared AVs.
Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-015-0038-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 305 citations 305 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-015-0038-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | CyberSEES Type 2: Achievi...NSF| CyberSEES Type 2: Achieving Clean Power System Flexibility: Sensing, Modeling, and Optimal ControlCatherine Wolfram; Catherine Wolfram; Isha Ray; Belinda Grunfeld; Noah Klugman; Duncan S. Callaway; Veronica Jacome;“Modern energy for all,” an internationally supported initiative to connect populations to electricity services, is expected to help reduce poverty-induced vulnerabilities. It has become a primary strategy for meeting sustainable development goals, especially in sub-Saharan Africa. However, when electricity is supplied by a capacity-constrained grid to a resource-constrained population, the service quality can vary both spatially and temporally. This research explores the quality of electricity services based on a case study of Unguja, Tanzania. Using 1) open-ended interviews, 2) detailed electricity-systems monitoring, and 3) household surveys, we show how voltage quality varies significantly, even within highly localized settings. Fluctuations result in dim lights at best and power outages and broken appliances at worst, denying many Unguja residents the expected benefits of access to modern energy. By combining an extensive understanding of the physical system together with interviews and surveys, this work presents a unique mapping of voltage quality in a system that is financially and physically constrained and highlights the consequences of poor-quality service for poor users.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1903610116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1903610116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993 United StatesPublisher:Elsevier BV Authors: Meyers, S.; Goldman, N.; Martin, N.; Freidmann, R.;Abstract Based on information drawn primarily from official planning documents issued by national governments and/or utilities, this article examines the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. This study found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plan calls for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.
Energy Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 1993Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(93)90262-e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 1993Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(93)90262-e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United StatesPublisher:American Chemical Society (ACS) Funded by:DFG | INUIT - Ice Nuclei resear...,DFG| INUIT - Ice Nuclei research UnIT ,[no funder available]Senchao Lai; Michael G. Weller; Iris Bellinghausen; Kira Ziegler; Kurt Lucas; Pascale S. J. Lakey; Manabu Shiraiwa; Janine Fröhlich-Nowoisky; Joachim Saloga; Rossella Sgarbanti; Naama Lang-Yona; Detlef Schuppan; Detlef Schuppan; Kathrin Reinmuth-Selzle; Christopher J. Kampf; Fangxia Shen; Bettina Weber; Anna T. Kunert; Fobang Liu; Albert Duschl; Ulrich Pöschl;Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Environmental Scienc... arrow_drop_down Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b04908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 221 citations 221 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b04908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:The Royal Society Authors: Douglas G. MacMartin; Katharine L. Ricke; David W. Keith;Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical-science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3°C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels.This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United StatesPublisher:California Digital Library (CDL) Authors: Chun, Moses;doi: 10.5070/p536146412
Author(s): Chun, Moses | Abstract: A short commentary on Jonathan B. Jarvis's essay "Designing climate resilience for people and nature at the landscape scale," published in this issue of Parks Stewardship Forum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5070/p536146412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5070/p536146412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Wiley Authors: Giudice, Linda C; Llamas‐Clark, Erlidia F; DeNicola, Nathaniel; Pandipati, Santosh; +5 AuthorsGiudice, Linda C; Llamas‐Clark, Erlidia F; DeNicola, Nathaniel; Pandipati, Santosh; Zlatnik, Marya G; Decena, Ditas Cristina D; Woodruff, Tracey J; Conry, Jeanne A; Exposures, the FIGO Committee on Climate Change and Toxic Environmental;AbstractClimate change is one of the major global health threats to the world's population. It is brought on by global warming due in large part to increasing levels of greenhouse gases resulting from human activity, including burning fossil fuels (carbon dioxide), animal husbandry (methane from manure), industry emissions (ozone, nitrogen oxides, sulfur dioxide), vehicle/factory exhaust, and chlorofluorocarbon aerosols that trap extra heat in the earth's atmosphere. Resulting extremes of weather give rise to wildfires, air pollution, changes in ecology, and floods. These in turn result in displacement of populations, family disruption, violence, and major impacts on water quality and availability, food security, public health and economic infrastructures, and limited abilities for civil society to maintain citizen safety. Climate change also has direct impacts on human health and well‐being. Particularly vulnerable populations are affected, including women, pregnant women, children, the disabled, and the elderly, who comprise the majority of the poor globally. Additionally, the effects of climate change disproportionally affect disadvantaged communities, including low income and communities of color, and lower‐income countries that are at highest risk of adverse impacts when disasters occur due to inequitable distribution of resources and their socioeconomic status. The climate crisis is tilting the risk balance unfavorably for women's sexual and reproductive health and rights as well as newborn and child health. Obstetrician/gynecologists have the unique opportunity to raise awareness, educate, and advocate for mitigation strategies to reverse climate change affecting our patients and their families. This article puts climate change in the context of women's reproductive health as a public health issue, a social justice issue, a human rights issue, an economic issue, a political issue, and a gender issue that needs our attention now for the health and well‐being of this and future generations. FIGO joins a broad coalition of international researchers and the medical community in stating that the current climate crisis presents an imminent health risk to pregnant people, developing fetuses, and reproductive health, and recognizing that we need society‐wide solutions, government policies, and global cooperation to address and reduce contributors, including fossil fuel production, to climate change.
International Journa... arrow_drop_down International Journal of Gynecology & ObstetricsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ijgo.13958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Gynecology & ObstetricsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ijgo.13958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Australia, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:UKRI | Applying NERC-funded biod...UKRI| Applying NERC-funded biodiversity research to improve corporate biodiversity strategiesBednarek, AT; Wyborn, C; Cvitanovic, C; Meyer, R; Colvin, RM; Addison, PFE; Close, SL; Curran, K; Farooque, M; Goldman, E; Hart, D; Mannix, H; McGreavy, B; Parris, A; Posner, S; Robinson, C; Ryan, M; Leith, P;Cultivating a more dynamic relationship between science and policy is essential for responding to complex social challenges such as sustainability. One approach to doing so is to "span the boundaries" between science and decision making and create a more comprehensive and inclusive knowledge exchange process. The exact definition and role of boundary spanning, however, can be nebulous. Indeed, boundary spanning often gets conflated and confused with other approaches to connecting science and policy, such as science communication, applied science, and advocacy, which can hinder progress in the field of boundary spanning. To help overcome this, in this perspective, we present the outcomes from a recent workshop of boundary-spanning practitioners gathered to (1) articulate a definition of what it means to work at this interface ("boundary spanning") and the types of activities it encompasses; (2) present a value proposition of these efforts to build better relationships between science and policy; and (3) identify opportunities to more effectively mainstream boundary-spanning activities. Drawing on our collective experiences, we suggest that boundary spanning has the potential to increase the efficiency by which useful research is produced, foster the capacity to absorb new evidence and perspectives into sustainability decision-making, enhance research relevance for societal challenges, and open new policy windows. We provide examples from our work that illustrate this potential. By offering these propositions for the value of boundary spanning, we hope to encourage a more robust discussion of how to achieve evidence-informed decision-making for sustainability.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/204057Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-018-0550-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 14 Powered bymore_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/204057Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-018-0550-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:University of California Agriculture and Natural Resources (UC ANR) Jeffrey P. Mitchell; Ryan C. Byrnes; Kerri L. Steenwerth; Frank M. Mitloehner; Stephen M. Wheeler; William R. Horwath; Kate M. Scow; Amber Kerr; Bryan M. Jenkins; Ermias Kebreab; Stephen Kaffka; Valerie T. Eviner; Louise E. Jackson; Josette Lewis; Josette Lewis;doi: 10.3733/ca.2017a0031
Agriculture in California contributes 8% of the state's greenhouse gas (GHG) emissions. To inform the state's policy and program strategy to meet climate targets, we review recent research on practices that can reduce emissions, sequester carbon and provide other co-benefits to producers and the environment across agriculture and rangeland systems. Importantly, the research reviewed here was conducted in California and addresses practices in our specific agricultural, socioeconomic and biophysical environment. Farmland conversion and the dairy and intensive livestock sector are the largest contributors to GHG emissions and offer the greatest opportunities for avoided emissions. We also identify a range of other opportunities including soil and nutrient management, integrated and diversified farming systems, rangeland management, and biomass-based energy generation. Additional research to replicate and quantify the emissions reduction or carbon sequestration potential of these practices will strengthen the evidence base for California climate policy.
California Agricultu... arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3733/ca.2017a0031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert California Agricultu... arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3733/ca.2017a0031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2015 United StatesPublisher:Springer Science and Business Media LLC Authors: Greenblatt, Jeffery; Shaheen, Susan, PhD;We review the history, current developments, projected future trends and environmental impacts of automated vehicles (AVs) and on-demand mobility, and explore potential synergies. Many automobile manufacturers and Google plan to release AVs between 2017 and 2020, with potential benefits including increased safety, more efficient road use, increased driver productivity and energy savings. Estimates of AV energy use and greenhouse gas (GHG) emissions range from an ~80 % or greater decrease to a threefold increase; however, we argue that net decreases are likely. On-demand mobility services exist in many cities around the world, with advances in mobile technology increasing their popularity. On-demand mobility can provide numerous transportation, land use, and environmental and social benefits, and users tend to decrease both vehicle ownership and annual vehicle distances traveled. Combining on-demand mobility and AVs may amplify adoption of both, and further lower energy use and GHG emissions through the use of small, efficient shared AVs.
Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-015-0038-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 305 citations 305 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-015-0038-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | CyberSEES Type 2: Achievi...NSF| CyberSEES Type 2: Achieving Clean Power System Flexibility: Sensing, Modeling, and Optimal ControlCatherine Wolfram; Catherine Wolfram; Isha Ray; Belinda Grunfeld; Noah Klugman; Duncan S. Callaway; Veronica Jacome;“Modern energy for all,” an internationally supported initiative to connect populations to electricity services, is expected to help reduce poverty-induced vulnerabilities. It has become a primary strategy for meeting sustainable development goals, especially in sub-Saharan Africa. However, when electricity is supplied by a capacity-constrained grid to a resource-constrained population, the service quality can vary both spatially and temporally. This research explores the quality of electricity services based on a case study of Unguja, Tanzania. Using 1) open-ended interviews, 2) detailed electricity-systems monitoring, and 3) household surveys, we show how voltage quality varies significantly, even within highly localized settings. Fluctuations result in dim lights at best and power outages and broken appliances at worst, denying many Unguja residents the expected benefits of access to modern energy. By combining an extensive understanding of the physical system together with interviews and surveys, this work presents a unique mapping of voltage quality in a system that is financially and physically constrained and highlights the consequences of poor-quality service for poor users.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1903610116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1903610116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993 United StatesPublisher:Elsevier BV Authors: Meyers, S.; Goldman, N.; Martin, N.; Freidmann, R.;Abstract Based on information drawn primarily from official planning documents issued by national governments and/or utilities, this article examines the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. This study found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plan calls for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.
Energy Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 1993Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(93)90262-e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 1993Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(93)90262-e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United StatesPublisher:American Chemical Society (ACS) Funded by:DFG | INUIT - Ice Nuclei resear...,DFG| INUIT - Ice Nuclei research UnIT ,[no funder available]Senchao Lai; Michael G. Weller; Iris Bellinghausen; Kira Ziegler; Kurt Lucas; Pascale S. J. Lakey; Manabu Shiraiwa; Janine Fröhlich-Nowoisky; Joachim Saloga; Rossella Sgarbanti; Naama Lang-Yona; Detlef Schuppan; Detlef Schuppan; Kathrin Reinmuth-Selzle; Christopher J. Kampf; Fangxia Shen; Bettina Weber; Anna T. Kunert; Fobang Liu; Albert Duschl; Ulrich Pöschl;Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Environmental Scienc... arrow_drop_down Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b04908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 221 citations 221 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Harvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b04908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:The Royal Society Authors: Douglas G. MacMartin; Katharine L. Ricke; David W. Keith;Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical-science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3°C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels.This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United StatesPublisher:California Digital Library (CDL) Authors: Chun, Moses;doi: 10.5070/p536146412
Author(s): Chun, Moses | Abstract: A short commentary on Jonathan B. Jarvis's essay "Designing climate resilience for people and nature at the landscape scale," published in this issue of Parks Stewardship Forum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5070/p536146412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5070/p536146412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Wiley Authors: Giudice, Linda C; Llamas‐Clark, Erlidia F; DeNicola, Nathaniel; Pandipati, Santosh; +5 AuthorsGiudice, Linda C; Llamas‐Clark, Erlidia F; DeNicola, Nathaniel; Pandipati, Santosh; Zlatnik, Marya G; Decena, Ditas Cristina D; Woodruff, Tracey J; Conry, Jeanne A; Exposures, the FIGO Committee on Climate Change and Toxic Environmental;AbstractClimate change is one of the major global health threats to the world's population. It is brought on by global warming due in large part to increasing levels of greenhouse gases resulting from human activity, including burning fossil fuels (carbon dioxide), animal husbandry (methane from manure), industry emissions (ozone, nitrogen oxides, sulfur dioxide), vehicle/factory exhaust, and chlorofluorocarbon aerosols that trap extra heat in the earth's atmosphere. Resulting extremes of weather give rise to wildfires, air pollution, changes in ecology, and floods. These in turn result in displacement of populations, family disruption, violence, and major impacts on water quality and availability, food security, public health and economic infrastructures, and limited abilities for civil society to maintain citizen safety. Climate change also has direct impacts on human health and well‐being. Particularly vulnerable populations are affected, including women, pregnant women, children, the disabled, and the elderly, who comprise the majority of the poor globally. Additionally, the effects of climate change disproportionally affect disadvantaged communities, including low income and communities of color, and lower‐income countries that are at highest risk of adverse impacts when disasters occur due to inequitable distribution of resources and their socioeconomic status. The climate crisis is tilting the risk balance unfavorably for women's sexual and reproductive health and rights as well as newborn and child health. Obstetrician/gynecologists have the unique opportunity to raise awareness, educate, and advocate for mitigation strategies to reverse climate change affecting our patients and their families. This article puts climate change in the context of women's reproductive health as a public health issue, a social justice issue, a human rights issue, an economic issue, a political issue, and a gender issue that needs our attention now for the health and well‐being of this and future generations. FIGO joins a broad coalition of international researchers and the medical community in stating that the current climate crisis presents an imminent health risk to pregnant people, developing fetuses, and reproductive health, and recognizing that we need society‐wide solutions, government policies, and global cooperation to address and reduce contributors, including fossil fuel production, to climate change.
International Journa... arrow_drop_down International Journal of Gynecology & ObstetricsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ijgo.13958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Gynecology & ObstetricsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ijgo.13958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Australia, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:UKRI | Applying NERC-funded biod...UKRI| Applying NERC-funded biodiversity research to improve corporate biodiversity strategiesBednarek, AT; Wyborn, C; Cvitanovic, C; Meyer, R; Colvin, RM; Addison, PFE; Close, SL; Curran, K; Farooque, M; Goldman, E; Hart, D; Mannix, H; McGreavy, B; Parris, A; Posner, S; Robinson, C; Ryan, M; Leith, P;Cultivating a more dynamic relationship between science and policy is essential for responding to complex social challenges such as sustainability. One approach to doing so is to "span the boundaries" between science and decision making and create a more comprehensive and inclusive knowledge exchange process. The exact definition and role of boundary spanning, however, can be nebulous. Indeed, boundary spanning often gets conflated and confused with other approaches to connecting science and policy, such as science communication, applied science, and advocacy, which can hinder progress in the field of boundary spanning. To help overcome this, in this perspective, we present the outcomes from a recent workshop of boundary-spanning practitioners gathered to (1) articulate a definition of what it means to work at this interface ("boundary spanning") and the types of activities it encompasses; (2) present a value proposition of these efforts to build better relationships between science and policy; and (3) identify opportunities to more effectively mainstream boundary-spanning activities. Drawing on our collective experiences, we suggest that boundary spanning has the potential to increase the efficiency by which useful research is produced, foster the capacity to absorb new evidence and perspectives into sustainability decision-making, enhance research relevance for societal challenges, and open new policy windows. We provide examples from our work that illustrate this potential. By offering these propositions for the value of boundary spanning, we hope to encourage a more robust discussion of how to achieve evidence-informed decision-making for sustainability.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/204057Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-018-0550-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 14 Powered bymore_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/204057Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-018-0550-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:University of California Agriculture and Natural Resources (UC ANR) Jeffrey P. Mitchell; Ryan C. Byrnes; Kerri L. Steenwerth; Frank M. Mitloehner; Stephen M. Wheeler; William R. Horwath; Kate M. Scow; Amber Kerr; Bryan M. Jenkins; Ermias Kebreab; Stephen Kaffka; Valerie T. Eviner; Louise E. Jackson; Josette Lewis; Josette Lewis;doi: 10.3733/ca.2017a0031
Agriculture in California contributes 8% of the state's greenhouse gas (GHG) emissions. To inform the state's policy and program strategy to meet climate targets, we review recent research on practices that can reduce emissions, sequester carbon and provide other co-benefits to producers and the environment across agriculture and rangeland systems. Importantly, the research reviewed here was conducted in California and addresses practices in our specific agricultural, socioeconomic and biophysical environment. Farmland conversion and the dairy and intensive livestock sector are the largest contributors to GHG emissions and offer the greatest opportunities for avoided emissions. We also identify a range of other opportunities including soil and nutrient management, integrated and diversified farming systems, rangeland management, and biomass-based energy generation. Additional research to replicate and quantify the emissions reduction or carbon sequestration potential of these practices will strengthen the evidence base for California climate policy.
California Agricultu... arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3733/ca.2017a0031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert California Agricultu... arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3733/ca.2017a0031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu