- home
- Search
- Energy Research
- 12. Responsible consumption
- 1. No poverty
- University of California System
- Energy Research
- 12. Responsible consumption
- 1. No poverty
- University of California System
description Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2005 United StatesPublisher:Elsevier BV Authors: Sperling, Dan; Lin, Zhenhong; Hamilton, Peter;Over 3 million Chinese Rural Vehicles (CRVs) were produced in China in 2002, three times that of conventional passenger cars. Yet these smaller, simpler, indigenous vehicles are virtually unknown outside China. The CRV industry is unusual in that it evolved largely outside the control of government regulation and policy, using local technology and resources. CRVs now consume one fourth of the diesel fuel in China and play an important role in rural development. This paper is the first comprehensive assessment (in English or Chinese) of these vehicles and this remarkable industry. This study documents and analyzes vehicle technology, government policy, environmental impacts, market demand, and industry dynamics. We find that increasing government regulation (mostly for emissions and safety) is having profound effects on the industry, with uncertain implications for the sales and globalization of rural vehicle technology.
Transport Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2004.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Transport Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2004.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 United StatesPublisher:American Society of Civil Engineers (ASCE) Publicly fundedJennifer L. Edwards; Jennifer L. Edwards; Ryan Firestone; Ryan Firestone; Chris Marnay; Chris Marnay; Afzal S. Siddiqui; Afzal S. Siddiqui; Michael Stadler; Michael Stadler; Srijay Ghosh; Srijay Ghosh;This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid (μGrid) consisting of a group of commercial buildings over an historical test year, 1999. The optimization is conducted using a customer adoption model developed at Berkeley Lab and implemented in the General Algebraic Modeling System. A μGrid is a semiautonomous grouping of electricity and heat loads interconnected with the existing utility grid (macrogrid) but able to island from it. The μGrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (<500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the μGrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.
Journal of Energy En... arrow_drop_down eScholarship - University of CaliforniaArticle . 2004Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(2005)131:1(2)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 64 citations 64 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of Energy En... arrow_drop_down eScholarship - University of CaliforniaArticle . 2004Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(2005)131:1(2)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:MDPI AG Authors: McGee, Julius Alexander; Alvarez, Camila;doi: 10.3390/su8020115
Many proponents of organic farming claim that it is a sustainable alternative to conventional agriculture due to its reliance on natural agro-inputs, such as manure based fertilizers and organic pesticides. However, in this analysis we argue that although particular organic farming practices clearly benefit ecosystems and human consumers, the social context in which some organic farms develop, limit the potential environmental benefits of organic agriculture. Specifically, we argue that certified organic farming’s increased reliance on agro-inputs, such as organic fertilizers and pesticides, reduces its ability to decrease global water pollution. We review recent research that demonstrates the environmental consequences of specific organic practices, as well as literature showing that global organic farming is increasing its reliance on agro-inputs, and contend that organic farming has its own metabolic rift with natural water systems similar to conventional agriculture. We use a fixed-effects panel regression model to explore how recent rises in certified organic farmland correlate to water pollution (measured as biochemical oxygen demand). Our findings indicate that increases in the proportion of organic farmland over time increases water pollution. We conclude that this may be a result of organic farms increasing their reliance on non-farm agro-inputs, such as fertilizers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ömer Ünsal; Aynaz Lotfata; Sedat Avcı;doi: 10.3390/su151511594
In recent years, a growing body of research has investigated the factors influencing land surface temperature (LST) in different cities, employing diverse methodologies. Our study aims to be one of the few to examine the socio-environmental variables (SV) of LST with a holistic approach, especially in primate cities in developing countries, which are particularly vulnerable to the impacts of climate change. In this context, the study preliminarily identifies the SV of LST while investigating the most vulnerable areas related to extreme LST at the neighborhood level. The combined 11 variables are analyzed using spatial modeling methods (GWR and MGWR). The MGWR model outperforms the GWR model with an adjusted R2 of 0.96. The results showed that: (1) the 65+ population is negatively associated with LST in 95% of neighborhoods; the socioeconomic index–LST relationship is negative in 65% of neighborhoods. (2) In 90% of the neighborhoods where the relationship between LST and the built environment ratio is positive, the socioeconomic level decreases while household size increases in 98% of the neighborhoods. (3) In 62% of the neighborhoods where the relationship between the 65+ population and LST is negative, the relationship between the socioeconomic level and LST is negative. This study aids decision-makers and planners in managing urban resources to reduce extreme LST exposure region by region and recommending multiscale policies to control determinant influences on LST.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 United StatesPublisher:Cambridge University Press (CUP) Funded by:NIH | Atlanta Clinical and Tran..., NIH | The University of Rochest..., NIH | UAB Center for Clinical a... +43 projectsNIH| Atlanta Clinical and Translational Science Institute (ACTSI) Renewal ,NIH| The University of Rochester's Clinical and Translational Science Institute ,NIH| UAB Center for Clinical and Translational Science (CCTS) ,NIH| Clinical and Translational Science Institute ,NIH| Michigan Institute for Clinical and Health Research (MCHR) ,NIH| Yale Clinical and Translational Science Award ,NIH| Mayo Clinic Center for Clinical and Translational Science (CCaTS) ,NIH| Northwestern University Clinical and Translational Science Institute (NUCATS) ,NIH| Arkansas Center for Clinical and Translational Research ,NIH| Clinical and Translational Science Center ,NIH| UT Southwestern Center for Translational Medicine (UL1/KL2/TL1) ,NIH| Indiana Clinical and Translational Sciences Institute ,NIH| Developing, Demonstrating, and Disseminating Innovative Programs to Achieve Translational Success ,NIH| CTSA Coordinating Center for Leading Innovation and Collaboration (CLIC) ,NIH| Clinical and Translational Science Award ,NIH| Clinical and Translational Science Coordinating Center ,NIH| UTMB Clinical and Translational Science Award ,NIH| Clinical and Translational Science Institute at Childrens National ,NIH| Clinical and Translational Science Award ,NIH| Southern California Clinical and Translational Institute ,NIH| Clinical and Translational Science Award ,NIH| North Carolina Translational & Clinical Sciences Institute (NC TraCS) ,NIH| Heartland Institute for Clinical and Translational Research ,NIH| Vanderbilt Institute for Clinical and Translational Research (VICTR) ,NIH| UC San Diego Clinical and Translational Research Institute ,NIH| Kentucky Center for Clinical and Translational Science ,NIH| Colorado Clinical and Translational Sciences Institute ,NIH| Institute of Translational Health Sciences ,NIH| Miami Clinical and Translational Science Institute ,NIH| University of Pittsburgh Clinical and Translational Science Institute ,NIH| Institute for Clinical and Translational Research ,NIH| UCLA Clinical Translational Science Institute ,NIH| Harvard Clinical and Translational Science Center ,NIH| Together: Transforming and Translating Discovery to Improve Health ,NIH| South Carolina Clinical & Translational Research Institute (SCTR) ,NIH| Clinical and Translational Science Award ,NIH| UNM HSC Clinical and Translational Science Center ,NIH| The Vanderbilt Institute for Clinical and Translational Research (VICTR) ,NIH| Cincinnati Center for Clinical and Translational Sciences and Training ,NIH| Washington University Institute of Clinical and Translational Sciences ,NIH| UC Davis Clinical and Translational Science Center ,NIH| CTSA Administrative Supplement QA/QC ,NIH| Institutional Clinical AND Translational Science Award ,NIH| The Ohio State University Center for clinical and Translational Science ,NIH| The University of Iowa Clinical and Translational Science Award ,NIH| The University of Iowa Clinical and Translational Science AwardJihad S. Obeid; Peter Tarczy-Hornoch; Paul A. Harris; William K. Barnett; Nicholas R. Anderson; Peter J. Embi; William R. Hogan; Douglas S. Bell; Leslie D. McIntosh; Boyd Knosp; Umberto Tachinardi; James J. Cimino; Firas H. Wehbe;AbstractA robust biomedical informatics infrastructure is essential for academic health centers engaged in translational research. There are no templates for what such an infrastructure encompasses or how it is funded. An informatics workgroup within the Clinical and Translational Science Awards network conducted an analysis to identify the scope, governance, and funding of this infrastructure. After we identified the essential components of an informatics infrastructure, we surveyed informatics leaders at network institutions about the governance and sustainability of the different components. Results from 42 survey respondents showed significant variations in governance and sustainability; however, some trends also emerged. Core informatics components such as electronic data capture systems, electronic health records data repositories, and related tools had mixed models of funding including, fee-for-service, extramural grants, and institutional support. Several key components such as regulatory systems (e.g., electronic Institutional Review Board [IRB] systems, grants, and contracts), security systems, data warehouses, and clinical trials management systems were overwhelmingly supported as institutional infrastructure. The findings highlighted in this report are worth noting for academic health centers and funding agencies involved in planning current and future informatics infrastructure, which provides the foundation for a robust, data-driven clinical and translational research program.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY ND SAFull-Text: https://hdl.handle.net/1805/20153Data sources: Bielefeld Academic Search Engine (BASE)Journal of Clinical and Translational ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/cts.2018.332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY ND SAFull-Text: https://hdl.handle.net/1805/20153Data sources: Bielefeld Academic Search Engine (BASE)Journal of Clinical and Translational ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/cts.2018.332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2011 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy;doi: 10.2172/1016369
This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2011Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1016369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2011Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1016369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2006 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Maddalena, R. L.; Destaillats, H.; Hodgson, A. T.; McKone, T. E.; Perino, C.;doi: 10.2172/918677
Quantifying Pollutant Emissions from Office Equipment Phase I Report Literature Review, Screening Level Measurements, and Revised Phase-II Research Proposal Principal Investigator: Thomas E. McKone Co Investigators: S.K. Hammond and A.T. Hodgson Authors R.L. Maddalena H. Destaillats A.T. Hodgson T.E. McKone C. Perino Prepared for: State of California Air Resources Board Research Division PO Box 2815 Sacramento CA 95812 Prepared by: Environmental Health Sciences Division School of Public Health 140 Warren Hall, #7360 University of California Berkeley, CA 94720-7360 December 2006
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/918677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/918677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:SAGE Publications Authors: Corbett, Charles J;doi: 10.1111/poms.12837
The rapid growth of “big data” provides tremendous opportunities for making better decisions, where “better” can be defined using any combination of economic, environmental, or social metrics. This essay provides a few examples of how the use of big data can precipitate more sustainable decision‐making. However, as with any technology, the use of big data on a large scale will have some undesirable consequences. Some of these are foreseeable, while others are entirely unpredictable. This essay highlights some of the sustainability‐related challenges posed by the use of big data. It does not intend to suggest that the advent of big data is an undesirable development. However, it is not too early to start asking what the unwanted repercussions of the big data revolution might be.
Production and Opera... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/poms.12837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 92 citations 92 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Production and Opera... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/poms.12837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:IOP Publishing Authors: Sanders, Kelly Twomey; Webber, Michael E.;handle: 2152/25754
The US food system utilizes large quantities of liquid fuels, electricity, and chemicals yielding significant greenhouse gas (GHG) emissions that are not considered in current retail prices, especially when the contribution of biogenic emissions is considered. However, because GHG emissions might be assigned a price in prospective climate policy frameworks, it would be useful to know the extent to which those policies would increase the incremental production costs to food within the US food system. This analysis uses lifecycle assessment (LCA) to (1) estimate the magnitude of carbon dioxide equivalent (CO _2 e) emissions from typical US food production practices, using wheat and beef as examples, and (2) quantify the cost of those emissions in the context of a GHG-pricing regime over a range of policy constructs. Wheat and beef were chosen as benchmark staples to provide a representative range of less intensive and more intensive agricultural goods, respectively. Results suggest that 1.1 ± 0.13 and 31 ± 8.1 kg of lifecycle CO _2 e emissions are embedded in 1 kg of wheat and beef production, respectively. Consequently, the cost of lifecycle CO _2 e emissions for wheat (i.e. cultivation, processing, transportation, storage, and end-use preparation) over an emissions price range of $10 and $85 per tonne CO _2 e is estimated to be between $0.01 and $0.09 per kg of wheat, respectively, which would increase total wheat production costs by approximately 0.3–2% per kg. By comparison, the estimated lifecycle CO _2 e price of beef over the same range of CO _2 e prices is between $0.31 and $2.60 per kg of beef, representing a total production cost increase of approximately 5–40% per kg based on average 2010 food prices. This range indicates that the incremental cost to total US food production might be anywhere between $0.63–5.4 Billion per year for grain and $3.70 and $32 Billion per year for beef based on CO _2 e emissions assuming that total production volumes stay the same.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/4/044011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/4/044011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Elsevier BV Authors: Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott;Abstract Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.11.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.11.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2005 United StatesPublisher:Elsevier BV Authors: Sperling, Dan; Lin, Zhenhong; Hamilton, Peter;Over 3 million Chinese Rural Vehicles (CRVs) were produced in China in 2002, three times that of conventional passenger cars. Yet these smaller, simpler, indigenous vehicles are virtually unknown outside China. The CRV industry is unusual in that it evolved largely outside the control of government regulation and policy, using local technology and resources. CRVs now consume one fourth of the diesel fuel in China and play an important role in rural development. This paper is the first comprehensive assessment (in English or Chinese) of these vehicles and this remarkable industry. This study documents and analyzes vehicle technology, government policy, environmental impacts, market demand, and industry dynamics. We find that increasing government regulation (mostly for emissions and safety) is having profound effects on the industry, with uncertain implications for the sales and globalization of rural vehicle technology.
Transport Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2004.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Transport Policy arrow_drop_down eScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2004.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 United StatesPublisher:American Society of Civil Engineers (ASCE) Publicly fundedJennifer L. Edwards; Jennifer L. Edwards; Ryan Firestone; Ryan Firestone; Chris Marnay; Chris Marnay; Afzal S. Siddiqui; Afzal S. Siddiqui; Michael Stadler; Michael Stadler; Srijay Ghosh; Srijay Ghosh;This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid (μGrid) consisting of a group of commercial buildings over an historical test year, 1999. The optimization is conducted using a customer adoption model developed at Berkeley Lab and implemented in the General Algebraic Modeling System. A μGrid is a semiautonomous grouping of electricity and heat loads interconnected with the existing utility grid (macrogrid) but able to island from it. The μGrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (<500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the μGrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.
Journal of Energy En... arrow_drop_down eScholarship - University of CaliforniaArticle . 2004Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(2005)131:1(2)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 64 citations 64 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of Energy En... arrow_drop_down eScholarship - University of CaliforniaArticle . 2004Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(2005)131:1(2)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:MDPI AG Authors: McGee, Julius Alexander; Alvarez, Camila;doi: 10.3390/su8020115
Many proponents of organic farming claim that it is a sustainable alternative to conventional agriculture due to its reliance on natural agro-inputs, such as manure based fertilizers and organic pesticides. However, in this analysis we argue that although particular organic farming practices clearly benefit ecosystems and human consumers, the social context in which some organic farms develop, limit the potential environmental benefits of organic agriculture. Specifically, we argue that certified organic farming’s increased reliance on agro-inputs, such as organic fertilizers and pesticides, reduces its ability to decrease global water pollution. We review recent research that demonstrates the environmental consequences of specific organic practices, as well as literature showing that global organic farming is increasing its reliance on agro-inputs, and contend that organic farming has its own metabolic rift with natural water systems similar to conventional agriculture. We use a fixed-effects panel regression model to explore how recent rises in certified organic farmland correlate to water pollution (measured as biochemical oxygen demand). Our findings indicate that increases in the proportion of organic farmland over time increases water pollution. We conclude that this may be a result of organic farms increasing their reliance on non-farm agro-inputs, such as fertilizers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ömer Ünsal; Aynaz Lotfata; Sedat Avcı;doi: 10.3390/su151511594
In recent years, a growing body of research has investigated the factors influencing land surface temperature (LST) in different cities, employing diverse methodologies. Our study aims to be one of the few to examine the socio-environmental variables (SV) of LST with a holistic approach, especially in primate cities in developing countries, which are particularly vulnerable to the impacts of climate change. In this context, the study preliminarily identifies the SV of LST while investigating the most vulnerable areas related to extreme LST at the neighborhood level. The combined 11 variables are analyzed using spatial modeling methods (GWR and MGWR). The MGWR model outperforms the GWR model with an adjusted R2 of 0.96. The results showed that: (1) the 65+ population is negatively associated with LST in 95% of neighborhoods; the socioeconomic index–LST relationship is negative in 65% of neighborhoods. (2) In 90% of the neighborhoods where the relationship between LST and the built environment ratio is positive, the socioeconomic level decreases while household size increases in 98% of the neighborhoods. (3) In 62% of the neighborhoods where the relationship between the 65+ population and LST is negative, the relationship between the socioeconomic level and LST is negative. This study aids decision-makers and planners in managing urban resources to reduce extreme LST exposure region by region and recommending multiscale policies to control determinant influences on LST.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 United StatesPublisher:Cambridge University Press (CUP) Funded by:NIH | Atlanta Clinical and Tran..., NIH | The University of Rochest..., NIH | UAB Center for Clinical a... +43 projectsNIH| Atlanta Clinical and Translational Science Institute (ACTSI) Renewal ,NIH| The University of Rochester's Clinical and Translational Science Institute ,NIH| UAB Center for Clinical and Translational Science (CCTS) ,NIH| Clinical and Translational Science Institute ,NIH| Michigan Institute for Clinical and Health Research (MCHR) ,NIH| Yale Clinical and Translational Science Award ,NIH| Mayo Clinic Center for Clinical and Translational Science (CCaTS) ,NIH| Northwestern University Clinical and Translational Science Institute (NUCATS) ,NIH| Arkansas Center for Clinical and Translational Research ,NIH| Clinical and Translational Science Center ,NIH| UT Southwestern Center for Translational Medicine (UL1/KL2/TL1) ,NIH| Indiana Clinical and Translational Sciences Institute ,NIH| Developing, Demonstrating, and Disseminating Innovative Programs to Achieve Translational Success ,NIH| CTSA Coordinating Center for Leading Innovation and Collaboration (CLIC) ,NIH| Clinical and Translational Science Award ,NIH| Clinical and Translational Science Coordinating Center ,NIH| UTMB Clinical and Translational Science Award ,NIH| Clinical and Translational Science Institute at Childrens National ,NIH| Clinical and Translational Science Award ,NIH| Southern California Clinical and Translational Institute ,NIH| Clinical and Translational Science Award ,NIH| North Carolina Translational & Clinical Sciences Institute (NC TraCS) ,NIH| Heartland Institute for Clinical and Translational Research ,NIH| Vanderbilt Institute for Clinical and Translational Research (VICTR) ,NIH| UC San Diego Clinical and Translational Research Institute ,NIH| Kentucky Center for Clinical and Translational Science ,NIH| Colorado Clinical and Translational Sciences Institute ,NIH| Institute of Translational Health Sciences ,NIH| Miami Clinical and Translational Science Institute ,NIH| University of Pittsburgh Clinical and Translational Science Institute ,NIH| Institute for Clinical and Translational Research ,NIH| UCLA Clinical Translational Science Institute ,NIH| Harvard Clinical and Translational Science Center ,NIH| Together: Transforming and Translating Discovery to Improve Health ,NIH| South Carolina Clinical & Translational Research Institute (SCTR) ,NIH| Clinical and Translational Science Award ,NIH| UNM HSC Clinical and Translational Science Center ,NIH| The Vanderbilt Institute for Clinical and Translational Research (VICTR) ,NIH| Cincinnati Center for Clinical and Translational Sciences and Training ,NIH| Washington University Institute of Clinical and Translational Sciences ,NIH| UC Davis Clinical and Translational Science Center ,NIH| CTSA Administrative Supplement QA/QC ,NIH| Institutional Clinical AND Translational Science Award ,NIH| The Ohio State University Center for clinical and Translational Science ,NIH| The University of Iowa Clinical and Translational Science Award ,NIH| The University of Iowa Clinical and Translational Science AwardJihad S. Obeid; Peter Tarczy-Hornoch; Paul A. Harris; William K. Barnett; Nicholas R. Anderson; Peter J. Embi; William R. Hogan; Douglas S. Bell; Leslie D. McIntosh; Boyd Knosp; Umberto Tachinardi; James J. Cimino; Firas H. Wehbe;AbstractA robust biomedical informatics infrastructure is essential for academic health centers engaged in translational research. There are no templates for what such an infrastructure encompasses or how it is funded. An informatics workgroup within the Clinical and Translational Science Awards network conducted an analysis to identify the scope, governance, and funding of this infrastructure. After we identified the essential components of an informatics infrastructure, we surveyed informatics leaders at network institutions about the governance and sustainability of the different components. Results from 42 survey respondents showed significant variations in governance and sustainability; however, some trends also emerged. Core informatics components such as electronic data capture systems, electronic health records data repositories, and related tools had mixed models of funding including, fee-for-service, extramural grants, and institutional support. Several key components such as regulatory systems (e.g., electronic Institutional Review Board [IRB] systems, grants, and contracts), security systems, data warehouses, and clinical trials management systems were overwhelmingly supported as institutional infrastructure. The findings highlighted in this report are worth noting for academic health centers and funding agencies involved in planning current and future informatics infrastructure, which provides the foundation for a robust, data-driven clinical and translational research program.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY ND SAFull-Text: https://hdl.handle.net/1805/20153Data sources: Bielefeld Academic Search Engine (BASE)Journal of Clinical and Translational ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/cts.2018.332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY ND SAFull-Text: https://hdl.handle.net/1805/20153Data sources: Bielefeld Academic Search Engine (BASE)Journal of Clinical and Translational ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/cts.2018.332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2011 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy;doi: 10.2172/1016369
This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2011Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1016369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2011Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1016369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2006 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Maddalena, R. L.; Destaillats, H.; Hodgson, A. T.; McKone, T. E.; Perino, C.;doi: 10.2172/918677
Quantifying Pollutant Emissions from Office Equipment Phase I Report Literature Review, Screening Level Measurements, and Revised Phase-II Research Proposal Principal Investigator: Thomas E. McKone Co Investigators: S.K. Hammond and A.T. Hodgson Authors R.L. Maddalena H. Destaillats A.T. Hodgson T.E. McKone C. Perino Prepared for: State of California Air Resources Board Research Division PO Box 2815 Sacramento CA 95812 Prepared by: Environmental Health Sciences Division School of Public Health 140 Warren Hall, #7360 University of California Berkeley, CA 94720-7360 December 2006
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/918677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/918677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:SAGE Publications Authors: Corbett, Charles J;doi: 10.1111/poms.12837
The rapid growth of “big data” provides tremendous opportunities for making better decisions, where “better” can be defined using any combination of economic, environmental, or social metrics. This essay provides a few examples of how the use of big data can precipitate more sustainable decision‐making. However, as with any technology, the use of big data on a large scale will have some undesirable consequences. Some of these are foreseeable, while others are entirely unpredictable. This essay highlights some of the sustainability‐related challenges posed by the use of big data. It does not intend to suggest that the advent of big data is an undesirable development. However, it is not too early to start asking what the unwanted repercussions of the big data revolution might be.
Production and Opera... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/poms.12837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 92 citations 92 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Production and Opera... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/poms.12837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:IOP Publishing Authors: Sanders, Kelly Twomey; Webber, Michael E.;handle: 2152/25754
The US food system utilizes large quantities of liquid fuels, electricity, and chemicals yielding significant greenhouse gas (GHG) emissions that are not considered in current retail prices, especially when the contribution of biogenic emissions is considered. However, because GHG emissions might be assigned a price in prospective climate policy frameworks, it would be useful to know the extent to which those policies would increase the incremental production costs to food within the US food system. This analysis uses lifecycle assessment (LCA) to (1) estimate the magnitude of carbon dioxide equivalent (CO _2 e) emissions from typical US food production practices, using wheat and beef as examples, and (2) quantify the cost of those emissions in the context of a GHG-pricing regime over a range of policy constructs. Wheat and beef were chosen as benchmark staples to provide a representative range of less intensive and more intensive agricultural goods, respectively. Results suggest that 1.1 ± 0.13 and 31 ± 8.1 kg of lifecycle CO _2 e emissions are embedded in 1 kg of wheat and beef production, respectively. Consequently, the cost of lifecycle CO _2 e emissions for wheat (i.e. cultivation, processing, transportation, storage, and end-use preparation) over an emissions price range of $10 and $85 per tonne CO _2 e is estimated to be between $0.01 and $0.09 per kg of wheat, respectively, which would increase total wheat production costs by approximately 0.3–2% per kg. By comparison, the estimated lifecycle CO _2 e price of beef over the same range of CO _2 e prices is between $0.31 and $2.60 per kg of beef, representing a total production cost increase of approximately 5–40% per kg based on average 2010 food prices. This range indicates that the incremental cost to total US food production might be anywhere between $0.63–5.4 Billion per year for grain and $3.70 and $32 Billion per year for beef based on CO _2 e emissions assuming that total production volumes stay the same.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/4/044011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/4/044011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Elsevier BV Authors: Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott;Abstract Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.11.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.11.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu