- home
- Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- 7. Clean energy
- 13. Climate action
- 15. Life on land
- Energy Research
- Open Access
- Closed Access
- Restricted
- 7. Clean energy
- 13. Climate action
- 15. Life on land
Research data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Fischer, Andrea; Fickert, Thomas; Schwaizer, Gabriele; Patzelt, Gernot; Groß, Günther;Monitoring of plant succession in glacier forelands so far has been restricted to field sampling. In this study, in situ vegetation sampling along a chronosequence between Little Ice Age (LIA) maximum extent and the recent glacier terminus at Jamtalferner/Silvretta (ferner is a Tyrolian toponym for glacier) is compared to time series of the Normalized Difference Vegetation Index (NDVI) calculated from 13 Landsat scenes (1985-2016). The glacier terminus positions at 16 dates between the LIA maximum and 2015 were analysed from historical maps, orthophotos and LiDAR images and used for site age determination. We sampled plots of different time since deglaciation, from very recent to approx. 150 years: after 100 years, roughly 80% of the ground is covered by plants and ground cover did not increase essentially thereafter. Species number increases from 10-20 species on young sites to 40-50 species after 100 years. The NDVI increases for all plots between 1985 and 2016, from a mean of 0.11 for 1985-1991 to 0.2 in 2009 and 0.27 in 2016. For the plots deglaciated between 1 and about 150 years, the NDVI increases with the time of exposure. As the increase in ground cover is clearly reproduced by the NDVI (R² ground cover/NDVI 0.84) - even for sparsely vegetated areas -, we see a high potential of satellite-borne NDVI to perform regional characterizations of glacier forelands for hydrological, ecological and hazard management related applications. This data collection comprises the galcier outlines, NDVIs and chronosequencing locations with diversity and ground cover data.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Oberschelp, Christopher;This dataset contains global raster maps to calculate particulate matter life cycle impacts from primary fine particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx) and ammonia (NH3) emissions. It also includes the R source code to reproduce these maps, a case study on the particulate matter health impacts of global coal power generation, and aggregated characterization factor tables for several spatial resolutions that are commonly used in life cycle assessment (LCA) (for example in the ecoinvent life cycle inventory (LCI) database).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/8jnj4vzbh6.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/8jnj4vzbh6.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:The University of Hong Kong Authors: Lishan Ran (9057026);This is the dataset for our research on assessing CO2 emissions from Chinese inland waters, including streams, rivers, lakes and reservoirs. The dataset includes three parts, including Part 1: Lakes and Reservoirs_1980s, Part 2: CO2 Dataset_2010s, and Part 3: Water chemistry records. Detailed information on these data can be found from the 'README' text file.
https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 21 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 11 Nov 2022Publisher:Dryad Authors: Eslamdoust, Jamshid;Plot design and harvesting Twelve sampling plots (16 m × 16 m) in three P. deltoides plantations were established based on systematic random design. To minimize edge effects, surrounding rows were not considered during sampling. The age of the stands was 18-20 years old. In each sampling plot, the DBH (diameter at breast height 1.3 m above the ground) of the individual trees was measured with a caliper in two perpendicular directions and the mean DBH determined. Tree height was measured by Haglöf-Vertex IV hypsometer. Based on the DBH and height measurements, 10 DBH classes from 15 to 42 cm (3 cm intervals) were established. The value of each DBH class represented the central value (i.e., class 15 included all DBH from 12.5 to 17.5 cm). In each DBH class, one representative tree was selected and harvested for a total of 10 P. deltoides trees. Measurements of bark percentagesThe stems of harvested trees were marked and cut into 2 m-segments. The mid-length diameter of each segment was measured outside the bark in two perpendicular directions with a caliper to determine the mean diameter. A 5 cm-thick disc was cut from the middle of each segment. A total of 123 discs were obtained and brought to the laboratory. All the discs were arranged into 2-cm wide diameter classes. The value of each disc class represents the central value (i.e., class 20 included all discs whose diameters ranged from 19.5 to 20.5 cm). Bark was separated from the wood using a peeler knife for each disc. Fresh bark and wood were weighted separately, oven-dried at 80 °C until constant weight, and the oven-dry weight measured. The bark percentage of each disc was considered as bark percentage of a 2 m-segment for fresh and dry weight. Finally, the bark percentage of the whole stem in each DBH class was calculated by adding the 2 m-segments. Bark biomass as an energy source has a high economic value. Bark content variations and production helps recognize the potential of this bioenergy source spatially before harvesting. The percentage of fresh and dry bark in Populus deltoides grown under a monoculture system was examined in the temperate region of northern Iran. Diameter at breast height (DBH) and total height data were analyzed based on an initial inventory. Ten sample trees were felled, separated into 2 m-segments, and weighted in the field. A 5-cm-thick disc from each segment was extracted for determining fresh and dry bark percentages. These were statistically significantly different in disc diameter classes and decreased with increasing disc diameters. Bark percentage of the disc classes ranged from 21.8 to 24.4% in small-sized diameters to 8.1‒9.3% in large-sized diameters. The differences between fresh and dry bark percentages depended on water content variations. Allometric power equations were fitted to data of fresh and dry bark percentages and disc diameters as well as DBH. The values of R2 ranged from 0.89 to 0.90. In addition, allometric power equations provided the best fits for relationships between total stem dry biomass, dry bark biomass, and DBH, R2 = 0.986 and 0.979 for the total stem dry biomass and stem dry bark biomass, respectively. The allometric models can be used to estimate bark percentage and bark production of P. deltoides in segments and for the whole stem for a wide range of segment diameters (8‒44 cm) and DBH (15‒45 cm).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:4TU.ResearchData Authors: Reijnders, Victor; Gerards, Marco; Hurink, Johann;The data in this dataset was collected during the GridFlex Heeten project, as part of Victor Reijnders' PhD project.The data was collected between August 2018 and August 2020 in 77 households all situated in Heeten (The Netherlands) and consists of electricity consumption and gas usage per minute per household. All participating households specified their anonymous data could be used in further research. The data of this project was collected in accordance with a privacy-by-design approach.
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY ND SAData sources: Bielefeld Academic Search Engine (BASE)4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: Datacite4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: DataciteDANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14447257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY ND SAData sources: Bielefeld Academic Search Engine (BASE)4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: Datacite4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: DataciteDANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14447257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 26 Oct 2023Publisher:Harvard Dataverse Authors: Moussa, Sonia; Jebali Ben Ghorbal, Manel; Ben Attia Sethom, Houda; Slama-Belkhodja, Ilhem;doi: 10.7910/dvn/q5ykfb
The dataset originates from microgrid platform (MGP, https://www.microgrid-qehna.com/) located in QehnA lab (https://www.qehna.com/) of the National School of Engineers of Tunis (ENIT) and serves as a testbed for various energy-related studies. The platform includes two microgrids, namely Pla-NeTE and SMARTNESS. Pla-NeTE, which stands for Platform for investigations of New Technologies of the Energy is a microgrid platform, designed for the investigation of new energy technologies in the case of massive residential photovoltaics integration and its impact on the distribution network. On the other hand, SMARTNESS, which stands for Smart Micro-grid plAtfoRm wiTh aN Energy SyStem, is a laboratory-scale microgrid designed for the exploration of emerging energy technologies and associated concepts such as collective self-consumption and energy management systems. Both microgrids are connected to the low-voltage distribution network. The dataset comprises samples of electrical data collected from the microgrid platform. It offers a valuable resource for researchers and analysts to study real-world electrical data and gain insights into the microgrid's performance, encompassing aspects such as energy consumption, renewable energy generation, and energy storage systems while considering residential microgrid in Tunisia. The dataset primarily consists of electrical data samples recorded from both microgrids while considering different operating conditions. It provides a granular view of the microgrids’ real-time electrical performance according to given test procedure. This dataset does not encompass detailed information about the microgrid's physical structure or components, but these later can be found in the related publications. Researchers can use this data to analyse the microgrids’ operational patterns and performance in the context of electrical energy management. The dataset's applicability extends to various research areas, including residential load management, renewable energy integration, and power quality improvement.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/q5ykfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/q5ykfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 14 Sep 2018Publisher:Mendeley Authors: Britsch, K;Operating measurements from three multi-week test campaigns of the natural circulation FLiBe loop. This system is investigating thermal hydraulic behavior of the molten salt BeF_2 -LiF (33 - 67 mol %). The system behaves in a stable fashion, but shows unusual local transients, such as flow break-down in the riser and thermal jumps at the cooler exit. Heat transfer shows promising trends that FLiBe will behave as a normal heat transfer fluid, as long as salt purity can be maintained. The most recent test shows heat transfer degradation that is likely a result of oxides and impurities. The data archive contains as-built dimensions, Matlab analysis codes, and the raw data files.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It show point estimates of GHG emissions from pesticide production from 1990 to 2016 at provincial level in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Fischer, Andrea; Fickert, Thomas; Schwaizer, Gabriele; Patzelt, Gernot; Groß, Günther;Monitoring of plant succession in glacier forelands so far has been restricted to field sampling. In this study, in situ vegetation sampling along a chronosequence between Little Ice Age (LIA) maximum extent and the recent glacier terminus at Jamtalferner/Silvretta (ferner is a Tyrolian toponym for glacier) is compared to time series of the Normalized Difference Vegetation Index (NDVI) calculated from 13 Landsat scenes (1985-2016). The glacier terminus positions at 16 dates between the LIA maximum and 2015 were analysed from historical maps, orthophotos and LiDAR images and used for site age determination. We sampled plots of different time since deglaciation, from very recent to approx. 150 years: after 100 years, roughly 80% of the ground is covered by plants and ground cover did not increase essentially thereafter. Species number increases from 10-20 species on young sites to 40-50 species after 100 years. The NDVI increases for all plots between 1985 and 2016, from a mean of 0.11 for 1985-1991 to 0.2 in 2009 and 0.27 in 2016. For the plots deglaciated between 1 and about 150 years, the NDVI increases with the time of exposure. As the increase in ground cover is clearly reproduced by the NDVI (R² ground cover/NDVI 0.84) - even for sparsely vegetated areas -, we see a high potential of satellite-borne NDVI to perform regional characterizations of glacier forelands for hydrological, ecological and hazard management related applications. This data collection comprises the galcier outlines, NDVIs and chronosequencing locations with diversity and ground cover data.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Oberschelp, Christopher;This dataset contains global raster maps to calculate particulate matter life cycle impacts from primary fine particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx) and ammonia (NH3) emissions. It also includes the R source code to reproduce these maps, a case study on the particulate matter health impacts of global coal power generation, and aggregated characterization factor tables for several spatial resolutions that are commonly used in life cycle assessment (LCA) (for example in the ecoinvent life cycle inventory (LCI) database).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/8jnj4vzbh6.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/8jnj4vzbh6.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:The University of Hong Kong Authors: Lishan Ran (9057026);This is the dataset for our research on assessing CO2 emissions from Chinese inland waters, including streams, rivers, lakes and reservoirs. The dataset includes three parts, including Part 1: Lakes and Reservoirs_1980s, Part 2: CO2 Dataset_2010s, and Part 3: Water chemistry records. Detailed information on these data can be found from the 'README' text file.
https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 21 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25442/hku.13560452.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 11 Nov 2022Publisher:Dryad Authors: Eslamdoust, Jamshid;Plot design and harvesting Twelve sampling plots (16 m × 16 m) in three P. deltoides plantations were established based on systematic random design. To minimize edge effects, surrounding rows were not considered during sampling. The age of the stands was 18-20 years old. In each sampling plot, the DBH (diameter at breast height 1.3 m above the ground) of the individual trees was measured with a caliper in two perpendicular directions and the mean DBH determined. Tree height was measured by Haglöf-Vertex IV hypsometer. Based on the DBH and height measurements, 10 DBH classes from 15 to 42 cm (3 cm intervals) were established. The value of each DBH class represented the central value (i.e., class 15 included all DBH from 12.5 to 17.5 cm). In each DBH class, one representative tree was selected and harvested for a total of 10 P. deltoides trees. Measurements of bark percentagesThe stems of harvested trees were marked and cut into 2 m-segments. The mid-length diameter of each segment was measured outside the bark in two perpendicular directions with a caliper to determine the mean diameter. A 5 cm-thick disc was cut from the middle of each segment. A total of 123 discs were obtained and brought to the laboratory. All the discs were arranged into 2-cm wide diameter classes. The value of each disc class represents the central value (i.e., class 20 included all discs whose diameters ranged from 19.5 to 20.5 cm). Bark was separated from the wood using a peeler knife for each disc. Fresh bark and wood were weighted separately, oven-dried at 80 °C until constant weight, and the oven-dry weight measured. The bark percentage of each disc was considered as bark percentage of a 2 m-segment for fresh and dry weight. Finally, the bark percentage of the whole stem in each DBH class was calculated by adding the 2 m-segments. Bark biomass as an energy source has a high economic value. Bark content variations and production helps recognize the potential of this bioenergy source spatially before harvesting. The percentage of fresh and dry bark in Populus deltoides grown under a monoculture system was examined in the temperate region of northern Iran. Diameter at breast height (DBH) and total height data were analyzed based on an initial inventory. Ten sample trees were felled, separated into 2 m-segments, and weighted in the field. A 5-cm-thick disc from each segment was extracted for determining fresh and dry bark percentages. These were statistically significantly different in disc diameter classes and decreased with increasing disc diameters. Bark percentage of the disc classes ranged from 21.8 to 24.4% in small-sized diameters to 8.1‒9.3% in large-sized diameters. The differences between fresh and dry bark percentages depended on water content variations. Allometric power equations were fitted to data of fresh and dry bark percentages and disc diameters as well as DBH. The values of R2 ranged from 0.89 to 0.90. In addition, allometric power equations provided the best fits for relationships between total stem dry biomass, dry bark biomass, and DBH, R2 = 0.986 and 0.979 for the total stem dry biomass and stem dry bark biomass, respectively. The allometric models can be used to estimate bark percentage and bark production of P. deltoides in segments and for the whole stem for a wide range of segment diameters (8‒44 cm) and DBH (15‒45 cm).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:4TU.ResearchData Authors: Reijnders, Victor; Gerards, Marco; Hurink, Johann;The data in this dataset was collected during the GridFlex Heeten project, as part of Victor Reijnders' PhD project.The data was collected between August 2018 and August 2020 in 77 households all situated in Heeten (The Netherlands) and consists of electricity consumption and gas usage per minute per household. All participating households specified their anonymous data could be used in further research. The data of this project was collected in accordance with a privacy-by-design approach.
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY ND SAData sources: Bielefeld Academic Search Engine (BASE)4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: Datacite4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: DataciteDANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14447257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY ND SAData sources: Bielefeld Academic Search Engine (BASE)4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: Datacite4TU.ResearchData | science.engineering.designDataset . 2021License: CC BY NC SAData sources: DataciteDANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/14447257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 26 Oct 2023Publisher:Harvard Dataverse Authors: Moussa, Sonia; Jebali Ben Ghorbal, Manel; Ben Attia Sethom, Houda; Slama-Belkhodja, Ilhem;doi: 10.7910/dvn/q5ykfb
The dataset originates from microgrid platform (MGP, https://www.microgrid-qehna.com/) located in QehnA lab (https://www.qehna.com/) of the National School of Engineers of Tunis (ENIT) and serves as a testbed for various energy-related studies. The platform includes two microgrids, namely Pla-NeTE and SMARTNESS. Pla-NeTE, which stands for Platform for investigations of New Technologies of the Energy is a microgrid platform, designed for the investigation of new energy technologies in the case of massive residential photovoltaics integration and its impact on the distribution network. On the other hand, SMARTNESS, which stands for Smart Micro-grid plAtfoRm wiTh aN Energy SyStem, is a laboratory-scale microgrid designed for the exploration of emerging energy technologies and associated concepts such as collective self-consumption and energy management systems. Both microgrids are connected to the low-voltage distribution network. The dataset comprises samples of electrical data collected from the microgrid platform. It offers a valuable resource for researchers and analysts to study real-world electrical data and gain insights into the microgrid's performance, encompassing aspects such as energy consumption, renewable energy generation, and energy storage systems while considering residential microgrid in Tunisia. The dataset primarily consists of electrical data samples recorded from both microgrids while considering different operating conditions. It provides a granular view of the microgrids’ real-time electrical performance according to given test procedure. This dataset does not encompass detailed information about the microgrid's physical structure or components, but these later can be found in the related publications. Researchers can use this data to analyse the microgrids’ operational patterns and performance in the context of electrical energy management. The dataset's applicability extends to various research areas, including residential load management, renewable energy integration, and power quality improvement.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/q5ykfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/q5ykfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 14 Sep 2018Publisher:Mendeley Authors: Britsch, K;Operating measurements from three multi-week test campaigns of the natural circulation FLiBe loop. This system is investigating thermal hydraulic behavior of the molten salt BeF_2 -LiF (33 - 67 mol %). The system behaves in a stable fashion, but shows unusual local transients, such as flow break-down in the riser and thermal jumps at the cooler exit. Heat transfer shows promising trends that FLiBe will behave as a normal heat transfer fluid, as long as salt purity can be maintained. The most recent test shows heat transfer degradation that is likely a result of oxides and impurities. The data archive contains as-built dimensions, Matlab analysis codes, and the raw data files.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It show point estimates of GHG emissions from pesticide production from 1990 to 2016 at provincial level in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu