- home
- Search
- Energy Research
- Open Access
- Open Source
- 2. Zero hunger
- 8. Economic growth
- Energy Research
- Open Access
- Open Source
- 2. Zero hunger
- 8. Economic growth
Research data keyboard_double_arrow_right Dataset 2019Publisher:Mendeley Authors: Kouton, J (via Mendeley Data);This file contains the data and the STATA estimation code to replicate the results in the article entitled: "Information Communication Technology development and energy demand in African countries".
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/zvxzrkp6d8.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/zvxzrkp6d8.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009. Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Statistical Office of the European Union (Eurostat) Authors: Statistical Office of the European Union (Eurostat);GDP expressed in PPS (purchasing power standards) eliminates differences in price levels between countries. Calculations on a per inhabitant basis allow for the comparison of economies and regions significantly different in absolute size. GDP per inhabitant in PPS is the key variable for determining the eligibility of NUTS 2 regions in the framework of the European Unions structural policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::04149ee428d07360314c2cb3ba95d41e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::04149ee428d07360314c2cb3ba95d41e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Shendryk, Yuri;This repository contains the data used to generate the results for the paper: Yuri Shendryk, Jeremy Sofonia, Robert Garrard, Yannik Rist, Danielle Skocaj, and Peter Thorburn (2020). Fine-scale Prediction of Leaf Nitrogen Content and Yield in Sugarcane using UAV LiDAR and Multispectral Imaging. The data to reproduce results could be also found here: https://github.com/RobGarrard/Fine-scale-prediction-of-leaf-nitrogen-content-and-yield-in-sugarcane. For any queries regarding these codes please contact robert.garrard@csiro.au or yuri.shendryk@csiro.au.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/wck5rrxxy7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/wck5rrxxy7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Bruwer, JP;Small Medium and Micro Enterprises (SMMEs) play a significant role in the socio-economic stimulation of South Africa. Particularly, South African SMMEs are believed to contribute around 50% to the national Gross Domestic Product (GDP) while simultaneously employing up to 80% of the national workforce. Prior research does however suggest that these business entities have among the worst sustainability rates in the world as up to 75% fail after being in operation for three years. A probable reason for the latter dispensation is the non-management of economic factors, one of which is that of Taxation. Taxation is a mandatory obligation imposed on citizens of a country to fund state expenditure. For this working paper, Customs and Excise Taxation is focused on; Taxation that is levied on goods and/or services that are hazardous to both human- and environmental health and wellness. Over the years, Customs and Excise Taxation has not only been imposed on tobacco products, alcoholic products and plastic bags but have also increased year-on-year, to date. As such, the perception was formulated by the author that the sustainability of South African (retail) SMMEs, especially those who sell tobacco products, alcoholic products and plastic bags, are adversely affected by the year-on-year increases of Customs and Excise Taxation. The primary objective of this working paper is to ascertain whether the perception formulated shows truth, in theory. This working paper therefore takes on a non-empirical, exploratory approach that makes use of a qualitative research methodology. Stemming from the findings, thus far, it appears that Customs and Excise Taxation adversely influences the sustainability of South African SMMEs that sell tobacco products, alcoholic products and plastic bags.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/tmxy3mntbr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/tmxy3mntbr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 19 Oct 2018Publisher:Harvard Dataverse Authors: Dossou-Yovo, Elliott; Baggie, Idriss; Djagba, Justin Fagnombo; Swart, Sander;doi: 10.7910/dvn/ylupsb
Inland valleys are becoming increasingly important agricultural production areas for rural households in sub-Saharan Africa due to their relative high and secure water availability and soil fertility. In addition, inland valleys are important as water buffer and biodiversity hot spots and they provide local communities with forest, forage, and fishing resources. As different inland-valley ecosystem functions may conflict with agricultural objectives, indiscriminate development should be avoided. This study aims to analyze the diversity of inland valleys in Sierra Leone and to develop guidelines for their sustainable use. Land use, biophysical and socio-economic data were analyzed on 257 inland valleys using spatial and multivariate techniques. Five cluster groups of inland valleys were identified: (i) semi-permanently flooded with good soil fertility, mostly under natural vegetation; (ii) semi-permanently flooded with very low soil fertility, abandoned by farmers; (iii) seasonally flooded with low soil fertility under low input levels, used for rainfed rice and off-season vegetables for household consumption and market; (iv) well drained with moderate soil fertility under medium input levels, used for rainfed rice and off-season vegetables for household consumption and market; and (v) well drained with moderate soil fertility under low input levels, used for household consumption. Soil fertility, hydrological regime, physical and market accessibility were the major factors affecting agricultural intensification of inland valleys. Opening up the areas in which inland valleys occur through improved roads and markets, and better water control through drainage infrastructures along with an integrated nutrient management would promote the sustainable agricultural use of inland valleys.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/ylupsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/ylupsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Mendeley Authors: Lawal, O (via Mendeley Data);Yield data collated from the Global Yield Gap and Water Productivity Atlas (http://www.yieldgap.org/) were used to compute this sensitivity index. In the case of Nigeria yield data were available for the period between 2002 – 2010. The index was computed using the method described by Shi and Tao (2014). This method involves detrending (multiplicative detrending method) the yield data and this led to the generation of expected yield for each year. The index was then computed as the ration of expected Maize yield divided by the actual linear yield for this period. Detrending has been reported to aid the removal of the potential impact of technology, error in reporting and captures the variations in yield attributable to climate. The computed index can be linked to a GIS file (Shapefiles) availble from the Global Yield Gap and Water Productivity Atlas to create a visual representation of the index. High index value indicate high yield sensitivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/s73x3fmbpr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/s73x3fmbpr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Feb 2022Publisher:Harvard Dataverse Authors: Guindo, Samuel; Dossou-Yovo, Elliott Ronald;doi: 10.7910/dvn/fzccq9
The data used in this article are related to the rice yield following the use of the RiceAdvice technology recommendation and the rice yield following the recommended level of fertilizer recommendations. The data were collected in 5 sites in Mali. In all sites, rice yield with RiceAdvice was higher than rice yield following the conventional levels of fertilizer. On average, rice yield with RiceAdvice was 0.7 t/ha higher than rice yield with the conventional level of fertilizer recommendations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/fzccq9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/fzccq9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Publisher:Mendeley Authors: Kouton, J (via Mendeley Data);This file contains the data and the STATA estimation code to replicate the results in the article entitled: "Information Communication Technology development and energy demand in African countries".
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/zvxzrkp6d8.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/zvxzrkp6d8.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009. Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Statistical Office of the European Union (Eurostat) Authors: Statistical Office of the European Union (Eurostat);GDP expressed in PPS (purchasing power standards) eliminates differences in price levels between countries. Calculations on a per inhabitant basis allow for the comparison of economies and regions significantly different in absolute size. GDP per inhabitant in PPS is the key variable for determining the eligibility of NUTS 2 regions in the framework of the European Unions structural policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::04149ee428d07360314c2cb3ba95d41e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::04149ee428d07360314c2cb3ba95d41e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Shendryk, Yuri;This repository contains the data used to generate the results for the paper: Yuri Shendryk, Jeremy Sofonia, Robert Garrard, Yannik Rist, Danielle Skocaj, and Peter Thorburn (2020). Fine-scale Prediction of Leaf Nitrogen Content and Yield in Sugarcane using UAV LiDAR and Multispectral Imaging. The data to reproduce results could be also found here: https://github.com/RobGarrard/Fine-scale-prediction-of-leaf-nitrogen-content-and-yield-in-sugarcane. For any queries regarding these codes please contact robert.garrard@csiro.au or yuri.shendryk@csiro.au.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/wck5rrxxy7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/wck5rrxxy7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Bruwer, JP;Small Medium and Micro Enterprises (SMMEs) play a significant role in the socio-economic stimulation of South Africa. Particularly, South African SMMEs are believed to contribute around 50% to the national Gross Domestic Product (GDP) while simultaneously employing up to 80% of the national workforce. Prior research does however suggest that these business entities have among the worst sustainability rates in the world as up to 75% fail after being in operation for three years. A probable reason for the latter dispensation is the non-management of economic factors, one of which is that of Taxation. Taxation is a mandatory obligation imposed on citizens of a country to fund state expenditure. For this working paper, Customs and Excise Taxation is focused on; Taxation that is levied on goods and/or services that are hazardous to both human- and environmental health and wellness. Over the years, Customs and Excise Taxation has not only been imposed on tobacco products, alcoholic products and plastic bags but have also increased year-on-year, to date. As such, the perception was formulated by the author that the sustainability of South African (retail) SMMEs, especially those who sell tobacco products, alcoholic products and plastic bags, are adversely affected by the year-on-year increases of Customs and Excise Taxation. The primary objective of this working paper is to ascertain whether the perception formulated shows truth, in theory. This working paper therefore takes on a non-empirical, exploratory approach that makes use of a qualitative research methodology. Stemming from the findings, thus far, it appears that Customs and Excise Taxation adversely influences the sustainability of South African SMMEs that sell tobacco products, alcoholic products and plastic bags.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/tmxy3mntbr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/tmxy3mntbr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 19 Oct 2018Publisher:Harvard Dataverse Authors: Dossou-Yovo, Elliott; Baggie, Idriss; Djagba, Justin Fagnombo; Swart, Sander;doi: 10.7910/dvn/ylupsb
Inland valleys are becoming increasingly important agricultural production areas for rural households in sub-Saharan Africa due to their relative high and secure water availability and soil fertility. In addition, inland valleys are important as water buffer and biodiversity hot spots and they provide local communities with forest, forage, and fishing resources. As different inland-valley ecosystem functions may conflict with agricultural objectives, indiscriminate development should be avoided. This study aims to analyze the diversity of inland valleys in Sierra Leone and to develop guidelines for their sustainable use. Land use, biophysical and socio-economic data were analyzed on 257 inland valleys using spatial and multivariate techniques. Five cluster groups of inland valleys were identified: (i) semi-permanently flooded with good soil fertility, mostly under natural vegetation; (ii) semi-permanently flooded with very low soil fertility, abandoned by farmers; (iii) seasonally flooded with low soil fertility under low input levels, used for rainfed rice and off-season vegetables for household consumption and market; (iv) well drained with moderate soil fertility under medium input levels, used for rainfed rice and off-season vegetables for household consumption and market; and (v) well drained with moderate soil fertility under low input levels, used for household consumption. Soil fertility, hydrological regime, physical and market accessibility were the major factors affecting agricultural intensification of inland valleys. Opening up the areas in which inland valleys occur through improved roads and markets, and better water control through drainage infrastructures along with an integrated nutrient management would promote the sustainable agricultural use of inland valleys.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/ylupsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/ylupsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Mendeley Authors: Lawal, O (via Mendeley Data);Yield data collated from the Global Yield Gap and Water Productivity Atlas (http://www.yieldgap.org/) were used to compute this sensitivity index. In the case of Nigeria yield data were available for the period between 2002 – 2010. The index was computed using the method described by Shi and Tao (2014). This method involves detrending (multiplicative detrending method) the yield data and this led to the generation of expected yield for each year. The index was then computed as the ration of expected Maize yield divided by the actual linear yield for this period. Detrending has been reported to aid the removal of the potential impact of technology, error in reporting and captures the variations in yield attributable to climate. The computed index can be linked to a GIS file (Shapefiles) availble from the Global Yield Gap and Water Productivity Atlas to create a visual representation of the index. High index value indicate high yield sensitivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/s73x3fmbpr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/s73x3fmbpr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Feb 2022Publisher:Harvard Dataverse Authors: Guindo, Samuel; Dossou-Yovo, Elliott Ronald;doi: 10.7910/dvn/fzccq9
The data used in this article are related to the rice yield following the use of the RiceAdvice technology recommendation and the rice yield following the recommended level of fertilizer recommendations. The data were collected in 5 sites in Mali. In all sites, rice yield with RiceAdvice was higher than rice yield following the conventional levels of fertilizer. On average, rice yield with RiceAdvice was 0.7 t/ha higher than rice yield with the conventional level of fertilizer recommendations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/fzccq9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/fzccq9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu