search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
892 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Open Source
  • 12. Responsible consumption

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luigi De Simio; Sabato Iannaccone;

    Alternative fuels and energy vectors are becoming increasingly important in terms of technical, geopolitical, economic, and environmental aspects. In particular, gaseous fuels and vectors, such as fossil or synthetic natural gas (NG) blended with hydrogen, commonly help provide optimal strategies to reduce global and toxic emissions of internal combustion engines, owing to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions, and costeffectiveness. However, diesel engines still represent the reference category among internal combustion engines in terms of maximum thermodynamic efficiency. The possibility offered by dual-fuel (DF) systems to combine the efficiency and performance of diesel engines with the environmental advantages of gaseous fuels has been the subject of extensive investigations. However, the simple replacement of diesel fuel with gaseous fuel does not allow for optimising the engine performance, owing to the high percentage of unburned gaseous fuel, which compromises the potential reduction of CO2; therefore, more complex combustion strategies should be realised. In this study, with the aim of improving the DF combustion process, an experimental investigation was performed to analyse low-temperature combustion (LTC), using NG and two enriched hydrogen-compressed NG blends as primary fuels. The LTC mode was activated by means of a very early advanced pilot injection and carried out in two close steps. The double pilot injection was used to control the energy release rate in the first combustion stage, thereby minimizing the increase of the rate of pressure and allowing the extension of the operation range under LTC. The experimental activity was also focused on analysing the particle emissions, as it is well known that these emissions, together with those of nitrogen oxide, constitute the main pollutants resulting from diesel fuel combustion. The results demonstrated the potential to reduce the unburned fuel, NOx, and particle emissions simultaneously, while maintaining equivalent CO2 emissions to a diesel-only engine. Both the timing and pressure of the pilot injection proved to be critical parameters for optimising the emissions and performance

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2019
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2019
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Matteo Lelli; Brunella Raco; Raffaele Battaglini;

    Landfill gas (LFG) tends to escape from the landfill surface even when LFG collecting systems are installed. Since LFG leaks are generally a noticeable percentage of the total production of LFG, the optimisation of the collection system is a fundamental step for both energy recovery and environmental impact mitigation. In this work, we suggest to take into account the results of direct measurements of gas fluxes at the air-cover interface to achieve this goal.During the last 5 years (2004-2009), 11 soil gas emission surveys have been carried out at the Municipal Solid Waste landfill of Legoli (Peccioli municipality, Pisa Province, Italy) by means of the accumulation chamber method. Direct and simultaneous measurements of CH(4) and CO(2) fluxes from the landfill cover (about 140,000 m(2)) have been performed to estimate the total output of both gases discharged into the atmosphere. Three different data processing have been applied and compared: Arithmetic mean of raw data (AMRD), sequential Gaussian conditional simulations (SGCS) and turning bands conditional simulations (TBCS). The total amount of LFG (captured and not captured) obtained from processing of direct measurements has been compared with the corresponding outcomes of three different numerical models (LandGEM, IPCC waste model and GasSim).Measured fluxes vary from undetectable values (<0.05 mol m(-2) day(-1) for CH(4) and <0.02 mol m(-2) day(-1) for CO(2)) to 246 mol m(-2) day(-1) for CH(4) and 275 mol m(-2) day(-1) for CO(2). The specific CH(4) and CO(2) fluxes (flux per surface unit) vary from 1.8 to 7.9 mol m(-2) day(-1) and from 2.4 to 7.8 mol m(-2) day(-1), respectively.The three different estimation methodologies (AMRD, SGCS and TBCS) used to evaluate the total output of diffused CO(2) and CH(4) fluxes from soil provide similar estimations, whereas there are some mismatches between these results and those of numerical LFG production models. Isoflux maps show a non-uniform spatial distribution, with high-flux zones not always corresponding with high-temperature areas shown by thermographic images.The average value estimated over the 5-year period for the Legoli landfill is 245 mol min(-1) for CH(4) and 379 mol min(-1) for CO(2), whereas the volume percentage of CH(4) in the total gas discharged into the atmosphere varies from 29% to 51%, with a mean value of 39%. The estimated yearly emissions from the landfill cover is about 1.29 x 10(8) mol annum(-1) (2,100 t year(-1)) of CH(4) and 1.99 x 10(8) mol annum(-1) (8,800 t year(-1)) of CO(2). Considering that the CH(4) global warming potential is 63 times greater than that of CO(2) (20 a time horizon, Lashof and Ahuja 1990), the emission of methane corresponds to 130,000 t annum(-1) of CO(2).The importance of these studies is to provide data for the worldwide inventory of CH(4) and CO(2) emissions from landfills, with the ultimate aim of determining the contribution of waste disposal to global warming. This kind of studies could be extended to other gas species, like the volatile organic compounds.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2010 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    32
    citations32
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2010 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Paolo Picchi; Davide Geneletti; Sven Stremke; Sven Stremke; +1 Authors

    The transition to a low carbon future is starting to affect landscapes around the world. In order for this landscape transformation to be sustainable, renewable energy technologies should not cause critical trade-offs between the provision of energy and that of other ecosystem services such as food production. This literature review advances the body of knowledge on sustainable energy transition with special focus on ecosystem services-based approaches and methods. Two key issues emerge from this review: only one sixth of the published applications on the relation between renewable energy and landscape make use of the ecosystem service framework. Secondly, the applications that do address ecosystem services for landscape planning and design lack efficient methods and spatial reference systems that accommodate both cultural and regulating ecosystem services. Future research efforts should be directed to further advancing the spatial reference systems, the use of participatory mapping and landscape visualizations tools for cultural ecosystem services and the elaboration of landscape design principles.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecosystem Services
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecosystem Services
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hannes Koenig; Pytrik Reidsma; Stefan Sieber; Klaus Mueller; +3 Authors

    Since 2007, a range of new modeling approaches and tools have been developed for sustainability impact assessment (SIA), but a lack of universal acceptance of SIA tools in applied policy making is observed. The current article gives an overview of experiences from several European and international projects, critically reviews the selected SIA tools and then discusses a number of reasons for the observed disconnect of the tools with the potential users. Largely based on the experiences of the presented SIA tools focusing land use policy advice, a decision tree is designed, which may facilitate an adequate, region and developmental phase specific selection of tool-box components for the development of SIA tools in future. Elements to ensure end-user participation are also integrated in the decision tree in order to increase the likelihood of the tool in applied land use policy advice. In addition, the Challenges in SIA tool development and use are further discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Land Use Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Land Use Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Land Use Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Land Use Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: N. Nhut; N.V. Hao; R.H. Bosma; J.A.V. Verreth; +2 Authors

    This paper compares the quantity and quality of solid waste obtained from traditional ponds and recirculating aquaculture systems (RAS) for striped catfish and evaluates methane and compost production from these wastes. Striped catfish sludge was collected from four commercial ponds along the Mekong river and from three indoor RAS. The amount of sludge dry matter produced per kilogram of fish in ponds was 6 times higher than that in RAS. However, the concentration of nutrients in solid waste from RAS was much higher, with better compost quality and higher methane yield than that of sludge from ponds. Out of the collected 381 L biogas, the methane yield of striped catfish's solid waste in RAS systems was 201 L per kg chemical oxygen demand (COD). In ponds, the collected 267 L biogas yielded 125 L CH4 per kg COD. The higher methane production from RAS sludge concurred with higher digestibility of COD: 58% for RAS versus 38% for ponds. The quality and quantity of methane from striped catfish sludge were lower than that for other animal manures, and the resulting electricity yield was low. Considering the higher nutrient concentration in RAS-sludge, we recommend the combination RAS and composting in reusing sludge, which is presently the best option for a more sustainable and cleaner striped catfish production system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquacultural Enginee...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquacultural Engineering
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquacultural Enginee...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquacultural Engineering
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; +2 Authors

    Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M.A. Dolman; M.P.W. Sonneveld; H. Mollenhorst; I.J.M. de Boer;

    Several dairy farms in the Netherlands aim at reducing their environmental impact by improving the internal nutrient cycle (INC) at farm level. Practices to improve nutrient cycling at these INC farms, however, might not only reduce the environmental impact on-farm, but alter also the off-farm environmental impact associated with supply chain processes (production and transport) related to inputs entering the farm, such as purchased feed or fertilizer or the economic or societal performance of these farms. We compared, therefore, a set of sustainability indicators of nine INC farms with a group of benchmark farms, comparable in terms of farm size, intensity and site-specific circumstances. This benchmark group was composed using statistical matching to exclude the effect of these characteristics on economic, environmental and societal performance. Economic indicators used were: farm income per unpaid annual working unit and the costs to revenues ratio. Environmental indicators used were derived from a cradle-to-farm-gate life cycle assessment: land occupation (LO), non-renewable energy use (NREU), global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP), expressed per kg fat-and-protein-corrected milk (FPCM). In addition, we quantified the soil content of organic carbon and phosphorus, and the soil nitrogen supply. Societal indicators used were: payments for agri-environmental measures, grazing hours and penalties for aberrant milk composition. Results showed that INC farms had a lower non-renewable energy use per kg FPCM, higher soil organic carbon content and received higher annual payments for agri-environmental measures, whereas economic and other environmental, societal indicators did not differed. Furthermore, we demonstrated the need for a sound benchmark to assess the effect of INC-farming on the economic, environmental and societal performance. Statistical matching enabled us to define, for each INC farm, a benchmark group with similar farm characteristics, which are known to affect sustainability indicators. Observed differences in sustainability indicators between both farm groups, therefore, truly resulted from aiming at internal nutrient cycling, and not from differences in other farm characteristics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    60
    citations60
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wim Timmermans; J. Slijkhuis; F. van den Goorbergh; Elizelle Juaneé Cilliers; +1 Authors

    Stories play an exceptionally important role in how people assign value to a place. Taken together, all those stories essentially give a place an identity. The aim of placemaking is to ensure that the people using a place can appreciate that place. Placemaking approaches are focussed on strategic interventions in a place and aimed at changing the meaning and value of that place for local people, thus creating a qualitative place for enhanced storytelling. Using greenery is a common approach in place-making. Urban greenery has gone through a process of emancipation in the past 15 years. This emancipation has led to awareness that urban greenery is about more than just ecology and biodiversity, but also has social and economic consequences for a city’s fortunes. It is clear that green spaces do not stand alone: they are part of a complex urban system, and the use of green spaces in this complex system has immediate repercussions for how the city functions. With the changing role of green spaces within cities, the need to manage these spaces is emphasized. In this sense, the place-making approach, along with the storytelling approach could provide valuable insight on the planning and management of green spaces within the urban environment, with the aim to enhance quality of life by means of the social connection between people, the users of the space, and the qualitative place provided. This research illustrated that green space managers would need more social and organizational skills to manage modern urban green spaces in an attempt to create qualitative, usable spaces for citizens, spaces that are built upon stories and spaces that would further enable future stories of citizen life. The Story Behind the Place: Creating Urban Spaces That Enhance Quality of Life (PDF Download Available). Available from: https://www.researchgate.net/publication/271918395_The_Story_Behind_the_Place_Creating_Urban_Spaces_That_Enhance_Quality_of_Life [accessed Dec 21, 2015].

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Research in Quality of Life
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Research in Quality of Life
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: L. De Simio; Sabato Iannaccone; Michele Gambino;

    In themediumtolongterm,lowfossilfuelavailabilitywillmakeitnecessarytofindalternatives.Mass productionofbiofuelswillnotbeapracticalsolutionbecauseitrequiresstrongcompetitionforland that isusedforgrowingfood.Therefore,itwillbenecessarytorevisetheframeoftransportation energy sources.Thenumberofpurelight-andheavy-dutyelectricvehiclescouldincreaseinurban areas.Instead,itwillbehardtofindaviablealternativetotheinternalcombustionengineforextra- urban transportvehicles,thereforealternativesyntheticfuelscouldbeusedtocompensateforfossil fuel depletion.Asidefromasmallshareobtainablefrombiomass,mostsyntheticfuelsareexpectedto be obtainedfromcoal.Amongthese,syntheticnaturalgasrepresentsaverygoodsolution.Infact, syntheticnaturalgaswillbeadvantageouswithrespecttohydrogen,whoseon-boardstoragewillbean unsolvedprobleminthemediumterm,andwithrespecttosyntheticliquidfuels,whichrequiremore energy intheproductionphase.Moreover,thecarboncontentofliquidfuels,whichishigherthanthat of gaseousfuels,willberesponsibleforhigherCO2 emissionsfromvehicles.Currently,naturalgashas poor diffusioninthetransportsector,andthispaperhighlightsthemotivationsforfavouringapolicy aimedatincreasingtheshareofgaseousfuel-poweredvehicles.Inadditiontothelowenvironmental impact,syntheticnaturalgasalsooffersthepossibilityofoptimisingtheutilisationoffutureresources

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2013
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Transport Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2013
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Transport Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Calvillo, Christian; Sánchez Miralles, Alvaro; Villar Collado, José;

    Capítulos en libros The smart city is a sustainable and efficient urban center that provides high quality of life to its inhabitants with an optimal management of its resources, where clean and cost effective energy generation is a key issue. Under this setting, distributed generation can provide an adequate tool to deal with energy reliability and to successfully implement renewable sources; nevertheless, selection and scaling of energy systems, considering location, is not a trivial task. Frequently, the stakeholders analyze only one or two "popular" generation systems, and then calculate the output and return of investment in a simplified and approximated approach. This practice could lead the stakeholder to an inadequate technology mix. To tackle this problem, this paper reviews and models most common energy sources for distributed generation in a smart city context. Then, a technical economic analysis is developed for 2 cases, a household and a district, considering not only renewable sources but also efficient non-renewable technologies. The results of the numerical analysis help to assess the more adequate generation systems for a given application, energetic demand, and geographical characteristics. A well-developed analysis is essential for a better understanding of the available technologies and their synergies; as a result, the investors can choose the appropriate solutions, maximizing overall benefits. info:eu-repo/semantics/publishedVersion

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icrera...
    Conference object . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icrera...
      Conference object . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
892 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luigi De Simio; Sabato Iannaccone;

    Alternative fuels and energy vectors are becoming increasingly important in terms of technical, geopolitical, economic, and environmental aspects. In particular, gaseous fuels and vectors, such as fossil or synthetic natural gas (NG) blended with hydrogen, commonly help provide optimal strategies to reduce global and toxic emissions of internal combustion engines, owing to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions, and costeffectiveness. However, diesel engines still represent the reference category among internal combustion engines in terms of maximum thermodynamic efficiency. The possibility offered by dual-fuel (DF) systems to combine the efficiency and performance of diesel engines with the environmental advantages of gaseous fuels has been the subject of extensive investigations. However, the simple replacement of diesel fuel with gaseous fuel does not allow for optimising the engine performance, owing to the high percentage of unburned gaseous fuel, which compromises the potential reduction of CO2; therefore, more complex combustion strategies should be realised. In this study, with the aim of improving the DF combustion process, an experimental investigation was performed to analyse low-temperature combustion (LTC), using NG and two enriched hydrogen-compressed NG blends as primary fuels. The LTC mode was activated by means of a very early advanced pilot injection and carried out in two close steps. The double pilot injection was used to control the energy release rate in the first combustion stage, thereby minimizing the increase of the rate of pressure and allowing the extension of the operation range under LTC. The experimental activity was also focused on analysing the particle emissions, as it is well known that these emissions, together with those of nitrogen oxide, constitute the main pollutants resulting from diesel fuel combustion. The results demonstrated the potential to reduce the unburned fuel, NOx, and particle emissions simultaneously, while maintaining equivalent CO2 emissions to a diesel-only engine. Both the timing and pressure of the pilot injection proved to be critical parameters for optimising the emissions and performance

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2019
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2019
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Matteo Lelli; Brunella Raco; Raffaele Battaglini;

    Landfill gas (LFG) tends to escape from the landfill surface even when LFG collecting systems are installed. Since LFG leaks are generally a noticeable percentage of the total production of LFG, the optimisation of the collection system is a fundamental step for both energy recovery and environmental impact mitigation. In this work, we suggest to take into account the results of direct measurements of gas fluxes at the air-cover interface to achieve this goal.During the last 5 years (2004-2009), 11 soil gas emission surveys have been carried out at the Municipal Solid Waste landfill of Legoli (Peccioli municipality, Pisa Province, Italy) by means of the accumulation chamber method. Direct and simultaneous measurements of CH(4) and CO(2) fluxes from the landfill cover (about 140,000 m(2)) have been performed to estimate the total output of both gases discharged into the atmosphere. Three different data processing have been applied and compared: Arithmetic mean of raw data (AMRD), sequential Gaussian conditional simulations (SGCS) and turning bands conditional simulations (TBCS). The total amount of LFG (captured and not captured) obtained from processing of direct measurements has been compared with the corresponding outcomes of three different numerical models (LandGEM, IPCC waste model and GasSim).Measured fluxes vary from undetectable values (<0.05 mol m(-2) day(-1) for CH(4) and <0.02 mol m(-2) day(-1) for CO(2)) to 246 mol m(-2) day(-1) for CH(4) and 275 mol m(-2) day(-1) for CO(2). The specific CH(4) and CO(2) fluxes (flux per surface unit) vary from 1.8 to 7.9 mol m(-2) day(-1) and from 2.4 to 7.8 mol m(-2) day(-1), respectively.The three different estimation methodologies (AMRD, SGCS and TBCS) used to evaluate the total output of diffused CO(2) and CH(4) fluxes from soil provide similar estimations, whereas there are some mismatches between these results and those of numerical LFG production models. Isoflux maps show a non-uniform spatial distribution, with high-flux zones not always corresponding with high-temperature areas shown by thermographic images.The average value estimated over the 5-year period for the Legoli landfill is 245 mol min(-1) for CH(4) and 379 mol min(-1) for CO(2), whereas the volume percentage of CH(4) in the total gas discharged into the atmosphere varies from 29% to 51%, with a mean value of 39%. The estimated yearly emissions from the landfill cover is about 1.29 x 10(8) mol annum(-1) (2,100 t year(-1)) of CH(4) and 1.99 x 10(8) mol annum(-1) (8,800 t year(-1)) of CO(2). Considering that the CH(4) global warming potential is 63 times greater than that of CO(2) (20 a time horizon, Lashof and Ahuja 1990), the emission of methane corresponds to 130,000 t annum(-1) of CO(2).The importance of these studies is to provide data for the worldwide inventory of CH(4) and CO(2) emissions from landfills, with the ultimate aim of determining the contribution of waste disposal to global warming. This kind of studies could be extended to other gas species, like the volatile organic compounds.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2010 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    32
    citations32
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2010 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Paolo Picchi; Davide Geneletti; Sven Stremke; Sven Stremke; +1 Authors

    The transition to a low carbon future is starting to affect landscapes around the world. In order for this landscape transformation to be sustainable, renewable energy technologies should not cause critical trade-offs between the provision of energy and that of other ecosystem services such as food production. This literature review advances the body of knowledge on sustainable energy transition with special focus on ecosystem services-based approaches and methods. Two key issues emerge from this review: only one sixth of the published applications on the relation between renewable energy and landscape make use of the ecosystem service framework. Secondly, the applications that do address ecosystem services for landscape planning and design lack efficient methods and spatial reference systems that accommodate both cultural and regulating ecosystem services. Future research efforts should be directed to further advancing the spatial reference systems, the use of participatory mapping and landscape visualizations tools for cultural ecosystem services and the elaboration of landscape design principles.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecosystem Services
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecosystem Services
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hannes Koenig; Pytrik Reidsma; Stefan Sieber; Klaus Mueller; +3 Authors

    Since 2007, a range of new modeling approaches and tools have been developed for sustainability impact assessment (SIA), but a lack of universal acceptance of SIA tools in applied policy making is observed. The current article gives an overview of experiences from several European and international projects, critically reviews the selected SIA tools and then discusses a number of reasons for the observed disconnect of the tools with the potential users. Largely based on the experiences of the presented SIA tools focusing land use policy advice, a decision tree is designed, which may facilitate an adequate, region and developmental phase specific selection of tool-box components for the development of SIA tools in future. Elements to ensure end-user participation are also integrated in the decision tree in order to increase the likelihood of the tool in applied land use policy advice. In addition, the Challenges in SIA tool development and use are further discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Land Use Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Land Use Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Land Use Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Land Use Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: N. Nhut; N.V. Hao; R.H. Bosma; J.A.V. Verreth; +2 Authors

    This paper compares the quantity and quality of solid waste obtained from traditional ponds and recirculating aquaculture systems (RAS) for striped catfish and evaluates methane and compost production from these wastes. Striped catfish sludge was collected from four commercial ponds along the Mekong river and from three indoor RAS. The amount of sludge dry matter produced per kilogram of fish in ponds was 6 times higher than that in RAS. However, the concentration of nutrients in solid waste from RAS was much higher, with better compost quality and higher methane yield than that of sludge from ponds. Out of the collected 381 L biogas, the methane yield of striped catfish's solid waste in RAS systems was 201 L per kg chemical oxygen demand (COD). In ponds, the collected 267 L biogas yielded 125 L CH4 per kg COD. The higher methane production from RAS sludge concurred with higher digestibility of COD: 58% for RAS versus 38% for ponds. The quality and quantity of methane from striped catfish sludge were lower than that for other animal manures, and the resulting electricity yield was low. Considering the higher nutrient concentration in RAS-sludge, we recommend the combination RAS and composting in reusing sludge, which is presently the best option for a more sustainable and cleaner striped catfish production system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquacultural Enginee...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquacultural Engineering
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquacultural Enginee...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquacultural Engineering
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; +2 Authors

    Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M.A. Dolman; M.P.W. Sonneveld; H. Mollenhorst; I.J.M. de Boer;

    Several dairy farms in the Netherlands aim at reducing their environmental impact by improving the internal nutrient cycle (INC) at farm level. Practices to improve nutrient cycling at these INC farms, however, might not only reduce the environmental impact on-farm, but alter also the off-farm environmental impact associated with supply chain processes (production and transport) related to inputs entering the farm, such as purchased feed or fertilizer or the economic or societal performance of these farms. We compared, therefore, a set of sustainability indicators of nine INC farms with a group of benchmark farms, comparable in terms of farm size, intensity and site-specific circumstances. This benchmark group was composed using statistical matching to exclude the effect of these characteristics on economic, environmental and societal performance. Economic indicators used were: farm income per unpaid annual working unit and the costs to revenues ratio. Environmental indicators used were derived from a cradle-to-farm-gate life cycle assessment: land occupation (LO), non-renewable energy use (NREU), global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP), expressed per kg fat-and-protein-corrected milk (FPCM). In addition, we quantified the soil content of organic carbon and phosphorus, and the soil nitrogen supply. Societal indicators used were: payments for agri-environmental measures, grazing hours and penalties for aberrant milk composition. Results showed that INC farms had a lower non-renewable energy use per kg FPCM, higher soil organic carbon content and received higher annual payments for agri-environmental measures, whereas economic and other environmental, societal indicators did not differed. Furthermore, we demonstrated the need for a sound benchmark to assess the effect of INC-farming on the economic, environmental and societal performance. Statistical matching enabled us to define, for each INC farm, a benchmark group with similar farm characteristics, which are known to affect sustainability indicators. Observed differences in sustainability indicators between both farm groups, therefore, truly resulted from aiming at internal nutrient cycling, and not from differences in other farm characteristics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    60
    citations60
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wim Timmermans; J. Slijkhuis; F. van den Goorbergh; Elizelle Juaneé Cilliers; +1 Authors

    Stories play an exceptionally important role in how people assign value to a place. Taken together, all those stories essentially give a place an identity. The aim of placemaking is to ensure that the people using a place can appreciate that place. Placemaking approaches are focussed on strategic interventions in a place and aimed at changing the meaning and value of that place for local people, thus creating a qualitative place for enhanced storytelling. Using greenery is a common approach in place-making. Urban greenery has gone through a process of emancipation in the past 15 years. This emancipation has led to awareness that urban greenery is about more than just ecology and biodiversity, but also has social and economic consequences for a city’s fortunes. It is clear that green spaces do not stand alone: they are part of a complex urban system, and the use of green spaces in this complex system has immediate repercussions for how the city functions. With the changing role of green spaces within cities, the need to manage these spaces is emphasized. In this sense, the place-making approach, along with the storytelling approach could provide valuable insight on the planning and management of green spaces within the urban environment, with the aim to enhance quality of life by means of the social connection between people, the users of the space, and the qualitative place provided. This research illustrated that green space managers would need more social and organizational skills to manage modern urban green spaces in an attempt to create qualitative, usable spaces for citizens, spaces that are built upon stories and spaces that would further enable future stories of citizen life. The Story Behind the Place: Creating Urban Spaces That Enhance Quality of Life (PDF Download Available). Available from: https://www.researchgate.net/publication/271918395_The_Story_Behind_the_Place_Creating_Urban_Spaces_That_Enhance_Quality_of_Life [accessed Dec 21, 2015].

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Research in Quality of Life
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Research in Quality of Life
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: L. De Simio; Sabato Iannaccone; Michele Gambino;

    In themediumtolongterm,lowfossilfuelavailabilitywillmakeitnecessarytofindalternatives.Mass productionofbiofuelswillnotbeapracticalsolutionbecauseitrequiresstrongcompetitionforland that isusedforgrowingfood.Therefore,itwillbenecessarytorevisetheframeoftransportation energy sources.Thenumberofpurelight-andheavy-dutyelectricvehiclescouldincreaseinurban areas.Instead,itwillbehardtofindaviablealternativetotheinternalcombustionengineforextra- urban transportvehicles,thereforealternativesyntheticfuelscouldbeusedtocompensateforfossil fuel depletion.Asidefromasmallshareobtainablefrombiomass,mostsyntheticfuelsareexpectedto be obtainedfromcoal.Amongthese,syntheticnaturalgasrepresentsaverygoodsolution.Infact, syntheticnaturalgaswillbeadvantageouswithrespecttohydrogen,whoseon-boardstoragewillbean unsolvedprobleminthemediumterm,andwithrespecttosyntheticliquidfuels,whichrequiremore energy intheproductionphase.Moreover,thecarboncontentofliquidfuels,whichishigherthanthat of gaseousfuels,willberesponsibleforhigherCO2 emissionsfromvehicles.Currently,naturalgashas poor diffusioninthetransportsector,andthispaperhighlightsthemotivationsforfavouringapolicy aimedatincreasingtheshareofgaseousfuel-poweredvehicles.Inadditiontothelowenvironmental impact,syntheticnaturalgasalsooffersthepossibilityofoptimisingtheutilisationoffutureresources

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2013
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Transport Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2013
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Transport Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Calvillo, Christian; Sánchez Miralles, Alvaro; Villar Collado, José;

    Capítulos en libros The smart city is a sustainable and efficient urban center that provides high quality of life to its inhabitants with an optimal management of its resources, where clean and cost effective energy generation is a key issue. Under this setting, distributed generation can provide an adequate tool to deal with energy reliability and to successfully implement renewable sources; nevertheless, selection and scaling of energy systems, considering location, is not a trivial task. Frequently, the stakeholders analyze only one or two "popular" generation systems, and then calculate the output and return of investment in a simplified and approximated approach. This practice could lead the stakeholder to an inadequate technology mix. To tackle this problem, this paper reviews and models most common energy sources for distributed generation in a smart city context. Then, a technical economic analysis is developed for 2 cases, a household and a district, considering not only renewable sources but also efficient non-renewable technologies. The results of the numerical analysis help to assess the more adequate generation systems for a given application, energetic demand, and geographical characteristics. A well-developed analysis is essential for a better understanding of the available technologies and their synergies; as a result, the investors can choose the appropriate solutions, maximizing overall benefits. info:eu-repo/semantics/publishedVersion

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icrera...
    Conference object . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icrera...
      Conference object . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.