- home
- Search
- Energy Research
- 2021-2025
- 13. Climate action
- 4. Education
- Energy Research
- 2021-2025
- 13. Climate action
- 4. Education
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MOHC.HadGEM3-GC31-MM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GitLab Vasconcelos, Miguel; Vasconcelos, Miguel; Cordeiro, Daniel; Da Costa, Georges; Dufossé, Fanny; Nicod, Jean-Marc; Rehn-Sonigo, Veronika;L'empreinte carbone des technologies numériques est une préoccupation depuis plusieurs années. Cela concerne principalement la consommation électrique des datacenters; beaucoup de fournisseurs dans le domaine du cloud s'engagent à n'utiliser que des sources d'énergie renouvelables. Cependant, cette approche néglige la phase de fabrication des composants des infrastructures numériques. Nous considérons dans ce travail de recherche la question du dimensionnement des énergies renouvelables pour une infrastructure de type cloud géographiquement distribuée autour de la planète, considérant l'impact carbone à la fois de l'électricité issue du réseau électrique local en fonction de la location de sa production, et de la fabrication des panneaux photovoltaïques et des batteries pour la part renouvelable de l'alimentation des ressources. Nous avons modélisé ce problème de minimisation de l'impact carbone d'une telle infrastructure cloud sous la forme d'un programme linéaire. La solution est le dimensionnement optimal d'une fédération de cloud sur une année complète en fonction des localisations des datacenters, des traces réelles des travaux à exécuter et valeurs d'irradiation solaire heure par heure. Nos résultats montrent une réduction de l'impact carbone de 30% comparés à la même architecture cloud totalement alimentée par des énergies renouvelables et 85% comparés à un modèle qui n'utiliserait qu'une alimentation via le réseau local d'électricité. The carbon footprint of IT technologies has been a significant concern in recent years. This concern mainly focuses on the electricity consumption of data centers; many cloud suppliers commit to using 100% of renewable energy sources. However, this approach neglects the impact of device manufacturing. We consider in this work the question of dimensioning the renewable energy sources of a geographically distributed cloud with considering the carbon impact of both the grid electricity consumption in the considered locations and the manufacturing of solar panels and batteries. We design a linear program to optimize cloud dimensioning over one year, considering worldwide locations for data centers, real-life workload traces, and solar irradiation values. Our results show a carbon footprint reduction of about 30% compared to a cloud fully supplied by solar energy and of 85% compared to the 100% grid electricity model. Données computationnelles ou de simulation: En tenant compte des données en entrée (description de la fédération de centres de données, fichiers de configuration appropriés, conditions météorologiques, etc.), le logiciel est capable de proposer un dimensionnement optimal pour la fédération des datacenters à faible émission de carbone distribuée à l'échelle mondiale : surface des panneaux photovoltaïques et capacité des batteries pour chaque datacenter de la fédération. Des scripts sont disponibles pour mettre en forme les solutions proposées. Simulation or computational data: Considering given inputs (datacenter federation, appropriate configuration files, weather conditions, etc.), the software is able to propose an optimal sizing for the globally distributed low carbon cloud federation: surface area of solar panels, battery capacity for each data center location. . Scripts are available to shape the optimal configuration. Audience: Research, Policy maker UpdatePeriodicity: as needed
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25666/dataubfc-2023-02-03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25666/dataubfc-2023-02-03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Lucas Moreau (11607577); Evelyne Thiffault (10700505); Dominic Cyr (4836624); Yan Boulanger (2909306);Dataset for the article: How can the forest sector maintain its mitigation potential in a changing climate ? Case studies of boreal and northern temperate forests in eastern Canada.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Hysa, Artan;The data shared in this package delivers the wildfire ignition probability and spreading capacity of vegetated surfaces in Romania following the method developed by Hysa and Baskaya (2019, https://doi.org/10.1007/s40808-018-0519-9). The model relies on remotely sensed free data that covers the time-lapse between 2015-2020. Geospatial information about sixteen criteria about anthropogenic, hydro-meteorological, geophysical, and fuel properties of Romanian territory are considered here. Raw data regarding each criterion is acquired for free from different online databases. The attribute table of the shared shapefile includes all inventory measurements per each criterion. It consist of 70410 point geometries in total representing 1km2 each, covering all vegetated surfaces of Romania. This data consist of a geospatial points layer (shp file), which deliver both the multi-criteria inventory records and the calculated wildfire ignition probability and wildfire spreading capacity (WIPI/WSCI) of the Romanian vegetated surfaces. The distance between points is 1km. The file consists of 70410 points in total, that overlap with the vegetated surfaces as derived from CORINE Land Cover data of 2018.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Technical University of Denmark Authors: Vazquez Pombo, Daniel;Author: Daniel Vázquez Pombo (dvapo@elektro.dtu.dk) ------------------------------------------------------------------------------- This dataset corresponds to the results of the paper titled: "Multi-Horizon Data-Driven Wind Power Forecast: From Nowcast to 2 Days-Ahead" 4th International Conference on Smart Energy Systems and Technologies (SEST) - 2021 -> https://sites.univaasa.fi/sest2021/ Submmited: Dec 2020 Accepted: Feb 2021 Published: Sep 2021 ------------------------------------------------------------------------------- The folder contains all the results presented in the paper, for clarity. Additional resources might be supplied under request. -------------------------------------------------------------------------------
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11583/dtu.13286336.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11583/dtu.13286336.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:SEANOE Lefevre, Dominique; Libes, Maurice; Mallarino, Didier; Bernardet, Karim; Gojak, Carl; Mahiouz, Karim; Laus, Celine; Malengros, Deny;doi: 10.17882/95264
The European Multidisciplinary Seafloor and water column Observatory (EMSO-ERIC, https://emso.eu/) is a research infrastructure distributed throughout Europe for seabed and water column observatories. It aims to further explore the oceans, better understand the phenomena that occur on the seabed, and elucidate the critical role that these phenomena play in global Earth systems. This observatory is based on observation sites (or nodes) that have been deployed in strategic locations in European seas, from the Arctic to the Atlantic, from the Mediterranean to the Black Sea. There are currently eleven deepwater nodes plus four shallow water test nodes. EMSO-Western Ligurian Sea Node (https://www.emso-fr.org/fr) is a second generation permanent submarine observatory deployed offshore of Toulon, France, as a follow up of the pioneering ANTARES neutrino telescope. This submarine network, deployed at a depth of 2450m, is part of KM3NeT (https://www.km3net.org/) which has a modular topology designed to connect up to 120 neutrino detection units, i.e. ten times more than ANTARES. The Earth and Sea Science (ESS) instrumentation connected to KM3NeT is based on two complementary components: an Instrumented Interface Module (MII) and an autonomous mooring line (ALBATROSS). The ALBATROSS line is an inductive instrumented mooring line (2000 m) composed of an acoustic communication system, two inductive cables equipped with CTD-O2 sensors, current meters and two instrumented buoys. The MII and the ALMBATROSS mooring line communicate through an acoustic link. The MII is connected to an electro-optical cable via the KM3NeT node allowing the data transfer from and to the land based controlled room.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/95264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/95264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Allison Louthan (3839500); Jeffrey Walters (10594484); Adam Terando (11268082); Victoria Garcia (11268078); +1 AuthorsAllison Louthan (3839500); Jeffrey Walters (10594484); Adam Terando (11268082); Victoria Garcia (11268078); William Morris (10130456);We include one dataset with demographic data for birds, called RCW_demo_data. Each row in this csv file represents an individual x year combination, and columns include information about individual and territory characteristics in that year, as well as various vital rates. For reproductive vital rates, we include these rates only for female breeders. Thus, reproductive vital rates such as “successfirstnest” will be NA (indicating missing data) for all males and for female non-breeders. Each row includes a climate reference number (“clim.group”) that allows the demographic data to be matched with the climate data in the climate files (see below for more description about these climate data). Below we list each column individually. Year: year in which data were collected Surtonext: did this individual survive to the next breeding season (1) or not (0)? Nohelp: how many helpers were present in this territory? Firstnestattempt_bin: did this breeding female initiate a nest in that year’s breeding season? 1 indicates yes, 0 indicates no. Morenestattempt_bin: did this breeding female initiate more than one nest in that years breeding season? 1 indicates yes, 0 no. Fledgedfirstnest: how many fledged from the first nest. Fledgedlaternest: how many fledged from any later nests. Eggsfirstattempt: how many eggs in the first nest. Eggslaterattempt: how many eggs in the first nest. Clim.group: a grouping variable that matches the clim.group variable in the climate datasets. Note that the demographic data contains a space, the climate datasets a period, but SH 146 is the same climate grouping as SH.146. Site: one of SH, EG, or CL, representing Sandhills, Eglin, or Camp Lejeune Numericage: age of the bird Binned status: one of Breeder, Helper or Floater (B, H, or F). Sex: F or M Numericmalemateage: age of the male breeder which which a female bred. Only recorde for breeding females. Successfirstnest_bin: was the first nest successful? 1 indicates yes, 0 no. Frsurvivingfirst: what fraction of eggs survived to fledging from the first nest?Successmorenest_bin: were any later (i.e., 2nd or later) nests successful? 1 indicates yes, 0 no. Frsurvivinglater: what fraction of eggs survived to fledging from all later nests? We have included five datasets corresponding to the five climate variables. The name of the csv file indicates the climate variable that the dataset contains. Each dataset contains information on the date, the climate group (clim.grp, corresponds to the climate groups in the demographic dataset), and the value of the climate signal for that date. Units are indicated in the main text for this paper.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15157602.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15157602.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MOHC.HadGEM3-GC31-MM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GitLab Vasconcelos, Miguel; Vasconcelos, Miguel; Cordeiro, Daniel; Da Costa, Georges; Dufossé, Fanny; Nicod, Jean-Marc; Rehn-Sonigo, Veronika;L'empreinte carbone des technologies numériques est une préoccupation depuis plusieurs années. Cela concerne principalement la consommation électrique des datacenters; beaucoup de fournisseurs dans le domaine du cloud s'engagent à n'utiliser que des sources d'énergie renouvelables. Cependant, cette approche néglige la phase de fabrication des composants des infrastructures numériques. Nous considérons dans ce travail de recherche la question du dimensionnement des énergies renouvelables pour une infrastructure de type cloud géographiquement distribuée autour de la planète, considérant l'impact carbone à la fois de l'électricité issue du réseau électrique local en fonction de la location de sa production, et de la fabrication des panneaux photovoltaïques et des batteries pour la part renouvelable de l'alimentation des ressources. Nous avons modélisé ce problème de minimisation de l'impact carbone d'une telle infrastructure cloud sous la forme d'un programme linéaire. La solution est le dimensionnement optimal d'une fédération de cloud sur une année complète en fonction des localisations des datacenters, des traces réelles des travaux à exécuter et valeurs d'irradiation solaire heure par heure. Nos résultats montrent une réduction de l'impact carbone de 30% comparés à la même architecture cloud totalement alimentée par des énergies renouvelables et 85% comparés à un modèle qui n'utiliserait qu'une alimentation via le réseau local d'électricité. The carbon footprint of IT technologies has been a significant concern in recent years. This concern mainly focuses on the electricity consumption of data centers; many cloud suppliers commit to using 100% of renewable energy sources. However, this approach neglects the impact of device manufacturing. We consider in this work the question of dimensioning the renewable energy sources of a geographically distributed cloud with considering the carbon impact of both the grid electricity consumption in the considered locations and the manufacturing of solar panels and batteries. We design a linear program to optimize cloud dimensioning over one year, considering worldwide locations for data centers, real-life workload traces, and solar irradiation values. Our results show a carbon footprint reduction of about 30% compared to a cloud fully supplied by solar energy and of 85% compared to the 100% grid electricity model. Données computationnelles ou de simulation: En tenant compte des données en entrée (description de la fédération de centres de données, fichiers de configuration appropriés, conditions météorologiques, etc.), le logiciel est capable de proposer un dimensionnement optimal pour la fédération des datacenters à faible émission de carbone distribuée à l'échelle mondiale : surface des panneaux photovoltaïques et capacité des batteries pour chaque datacenter de la fédération. Des scripts sont disponibles pour mettre en forme les solutions proposées. Simulation or computational data: Considering given inputs (datacenter federation, appropriate configuration files, weather conditions, etc.), the software is able to propose an optimal sizing for the globally distributed low carbon cloud federation: surface area of solar panels, battery capacity for each data center location. . Scripts are available to shape the optimal configuration. Audience: Research, Policy maker UpdatePeriodicity: as needed
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25666/dataubfc-2023-02-03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25666/dataubfc-2023-02-03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Lucas Moreau (11607577); Evelyne Thiffault (10700505); Dominic Cyr (4836624); Yan Boulanger (2909306);Dataset for the article: How can the forest sector maintain its mitigation potential in a changing climate ? Case studies of boreal and northern temperate forests in eastern Canada.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Hysa, Artan;The data shared in this package delivers the wildfire ignition probability and spreading capacity of vegetated surfaces in Romania following the method developed by Hysa and Baskaya (2019, https://doi.org/10.1007/s40808-018-0519-9). The model relies on remotely sensed free data that covers the time-lapse between 2015-2020. Geospatial information about sixteen criteria about anthropogenic, hydro-meteorological, geophysical, and fuel properties of Romanian territory are considered here. Raw data regarding each criterion is acquired for free from different online databases. The attribute table of the shared shapefile includes all inventory measurements per each criterion. It consist of 70410 point geometries in total representing 1km2 each, covering all vegetated surfaces of Romania. This data consist of a geospatial points layer (shp file), which deliver both the multi-criteria inventory records and the calculated wildfire ignition probability and wildfire spreading capacity (WIPI/WSCI) of the Romanian vegetated surfaces. The distance between points is 1km. The file consists of 70410 points in total, that overlap with the vegetated surfaces as derived from CORINE Land Cover data of 2018.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Technical University of Denmark Authors: Vazquez Pombo, Daniel;Author: Daniel Vázquez Pombo (dvapo@elektro.dtu.dk) ------------------------------------------------------------------------------- This dataset corresponds to the results of the paper titled: "Multi-Horizon Data-Driven Wind Power Forecast: From Nowcast to 2 Days-Ahead" 4th International Conference on Smart Energy Systems and Technologies (SEST) - 2021 -> https://sites.univaasa.fi/sest2021/ Submmited: Dec 2020 Accepted: Feb 2021 Published: Sep 2021 ------------------------------------------------------------------------------- The folder contains all the results presented in the paper, for clarity. Additional resources might be supplied under request. -------------------------------------------------------------------------------
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11583/dtu.13286336.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11583/dtu.13286336.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:SEANOE Lefevre, Dominique; Libes, Maurice; Mallarino, Didier; Bernardet, Karim; Gojak, Carl; Mahiouz, Karim; Laus, Celine; Malengros, Deny;doi: 10.17882/95264
The European Multidisciplinary Seafloor and water column Observatory (EMSO-ERIC, https://emso.eu/) is a research infrastructure distributed throughout Europe for seabed and water column observatories. It aims to further explore the oceans, better understand the phenomena that occur on the seabed, and elucidate the critical role that these phenomena play in global Earth systems. This observatory is based on observation sites (or nodes) that have been deployed in strategic locations in European seas, from the Arctic to the Atlantic, from the Mediterranean to the Black Sea. There are currently eleven deepwater nodes plus four shallow water test nodes. EMSO-Western Ligurian Sea Node (https://www.emso-fr.org/fr) is a second generation permanent submarine observatory deployed offshore of Toulon, France, as a follow up of the pioneering ANTARES neutrino telescope. This submarine network, deployed at a depth of 2450m, is part of KM3NeT (https://www.km3net.org/) which has a modular topology designed to connect up to 120 neutrino detection units, i.e. ten times more than ANTARES. The Earth and Sea Science (ESS) instrumentation connected to KM3NeT is based on two complementary components: an Instrumented Interface Module (MII) and an autonomous mooring line (ALBATROSS). The ALBATROSS line is an inductive instrumented mooring line (2000 m) composed of an acoustic communication system, two inductive cables equipped with CTD-O2 sensors, current meters and two instrumented buoys. The MII and the ALMBATROSS mooring line communicate through an acoustic link. The MII is connected to an electro-optical cable via the KM3NeT node allowing the data transfer from and to the land based controlled room.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/95264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/95264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Allison Louthan (3839500); Jeffrey Walters (10594484); Adam Terando (11268082); Victoria Garcia (11268078); +1 AuthorsAllison Louthan (3839500); Jeffrey Walters (10594484); Adam Terando (11268082); Victoria Garcia (11268078); William Morris (10130456);We include one dataset with demographic data for birds, called RCW_demo_data. Each row in this csv file represents an individual x year combination, and columns include information about individual and territory characteristics in that year, as well as various vital rates. For reproductive vital rates, we include these rates only for female breeders. Thus, reproductive vital rates such as “successfirstnest” will be NA (indicating missing data) for all males and for female non-breeders. Each row includes a climate reference number (“clim.group”) that allows the demographic data to be matched with the climate data in the climate files (see below for more description about these climate data). Below we list each column individually. Year: year in which data were collected Surtonext: did this individual survive to the next breeding season (1) or not (0)? Nohelp: how many helpers were present in this territory? Firstnestattempt_bin: did this breeding female initiate a nest in that year’s breeding season? 1 indicates yes, 0 indicates no. Morenestattempt_bin: did this breeding female initiate more than one nest in that years breeding season? 1 indicates yes, 0 no. Fledgedfirstnest: how many fledged from the first nest. Fledgedlaternest: how many fledged from any later nests. Eggsfirstattempt: how many eggs in the first nest. Eggslaterattempt: how many eggs in the first nest. Clim.group: a grouping variable that matches the clim.group variable in the climate datasets. Note that the demographic data contains a space, the climate datasets a period, but SH 146 is the same climate grouping as SH.146. Site: one of SH, EG, or CL, representing Sandhills, Eglin, or Camp Lejeune Numericage: age of the bird Binned status: one of Breeder, Helper or Floater (B, H, or F). Sex: F or M Numericmalemateage: age of the male breeder which which a female bred. Only recorde for breeding females. Successfirstnest_bin: was the first nest successful? 1 indicates yes, 0 no. Frsurvivingfirst: what fraction of eggs survived to fledging from the first nest?Successmorenest_bin: were any later (i.e., 2nd or later) nests successful? 1 indicates yes, 0 no. Frsurvivinglater: what fraction of eggs survived to fledging from all later nests? We have included five datasets corresponding to the five climate variables. The name of the csv file indicates the climate variable that the dataset contains. Each dataset contains information on the date, the climate group (clim.grp, corresponds to the climate groups in the demographic dataset), and the value of the climate signal for that date. Units are indicated in the main text for this paper.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15157602.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15157602.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu