- home
- Search
- Energy Research
- 11. Sustainability
- 2. Zero hunger
- 1. No poverty
- Energy Research
- 11. Sustainability
- 2. Zero hunger
- 1. No poverty
Research data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:4TU.ResearchData Authors: Klatt, Björn; de La Vega, Bernardo; Smith, Henrik;Data set and R script for the published article: Altered winter conditions impair plant development and yield in oilseed rape. The data set includes data about plant development, growth and yield resulting from an experiment where plants were grown at different winter conditions and exposed to an extreme weather event.The R script contains the analyses used for obtaining the results in the published article. Linear models within the R package glmmTMB are used for alla analyses.
4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/19130543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert 4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/19130543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2011Publisher:Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) Authors: Potter, P.; Ramankutty, N.; Bennett, E.M.; Donner, S.D.;doi: 10.7927/h4q81b0r
The Nitrogen Fertilizer Application data set of the Global Fertilizer and Manure, Version 1 Data Collection represents the amount of nitrogen fertilizer nutrients applied to croplands. The national-level nitrogen fertilizer application rates for crops are from the International Fertilizer Industry Association (IFA) "Fertilizer Use by Crop 2002" statistics database that is available by request from the Food and Agriculture Organization (FAO). The number of crop-specific fertilizer application rates reported for each country ranged from 2 crops (Guinea) to over 50 crops (United States), and the years for which the data are reported range from 1994 to 2001. Spatially explicit fertilizer inputs of Nitrogen (N) were computed by fusing national-level statistics on fertilizer use with global maps of harvested area for 175 crops. The data were compiled by Potter et al. (2010) and are distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7927/h4q81b0r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7927/h4q81b0r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Council for Scientific and Industrial Research Authors: Francois Engelbrecht;The analyses of future climate change over South Africa as described in the Third National Communication, are from the projections of the Coupled Global Climate Models (CGCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Assessment Report (AR) 5 of the Intergovernmental Panel on Climate Change (IPCC). These projections are used to inform on the uncertainty range of the large-scale climate change futures over the southern African region. At the Council for Scientific Industrial Research (CSIR), a dynamic regional climate model CCAM (conformal-cubic atmospheric model) of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) was used to downscale CMIP5 CGCM projections to 50 km resolution over Africa. These downscalings were for both Representative Concentration Pathway (RCP) 8.5 and Representative Concentration Pathway (RCP) 4.5 of AR5 of the IPCC. RCP 4.5 describes a future with relatively ambitious emission reductions whereas RCP 8.5 describes a future with no reductions in emissions. Emissions in RCP 4.5 peak around 2040, then decline and in RCP 8.5 emissions continue to rise throughout the 21st century. The change in temperature is expressed as an anomaly, the difference between the average climate over a period of the last several decades (1971-2000), and the projected climate (short to medium term 2021 to 2050). The simulations were performed on supercomputers of the CSIRO and on the Centre for High Performance Computing (CHPC) of the Meraka Institute of the CSIR in South Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 21 Feb 2018Publisher:Mendeley Authors: Ritchie, H;Study data and figure results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:South African Environmental Observation Network Authors: Wim Hugo;Data was derived from the following sources: * Extent of underutilised and subsistence farmland, data obtained from Department of Agriculture, Forestry, and Fisheries. * On such land, groundnut potential was calculated from data published by Schulze and Maharaj (2007) on groundnut-growing potential. * Grain, Oil, Oilcake, and Residue production was calculated based on seed yields, and aggregated to meso-zones for planning and feasibility analysis. * Grain, Oil and Residue ratios were derived from literature
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Raptis, Catherine;A global dataset of steam-electric power generating units with location, technical information, performance characteristics and associated environmental stressors (GHG emissions, freshwater consumption, thermal emissions to freshwater) as well as stressor intensities (per GJ el. produced).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:4TU.ResearchData Authors: Klatt, Björn; de La Vega, Bernardo; Smith, Henrik;Data set and R script for the published article: Altered winter conditions impair plant development and yield in oilseed rape. The data set includes data about plant development, growth and yield resulting from an experiment where plants were grown at different winter conditions and exposed to an extreme weather event.The R script contains the analyses used for obtaining the results in the published article. Linear models within the R package glmmTMB are used for alla analyses.
4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/19130543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert 4TU.ResearchData | s... arrow_drop_down DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/19130543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2011Publisher:Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) Authors: Potter, P.; Ramankutty, N.; Bennett, E.M.; Donner, S.D.;doi: 10.7927/h4q81b0r
The Nitrogen Fertilizer Application data set of the Global Fertilizer and Manure, Version 1 Data Collection represents the amount of nitrogen fertilizer nutrients applied to croplands. The national-level nitrogen fertilizer application rates for crops are from the International Fertilizer Industry Association (IFA) "Fertilizer Use by Crop 2002" statistics database that is available by request from the Food and Agriculture Organization (FAO). The number of crop-specific fertilizer application rates reported for each country ranged from 2 crops (Guinea) to over 50 crops (United States), and the years for which the data are reported range from 1994 to 2001. Spatially explicit fertilizer inputs of Nitrogen (N) were computed by fusing national-level statistics on fertilizer use with global maps of harvested area for 175 crops. The data were compiled by Potter et al. (2010) and are distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7927/h4q81b0r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7927/h4q81b0r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Council for Scientific and Industrial Research Authors: Francois Engelbrecht;The analyses of future climate change over South Africa as described in the Third National Communication, are from the projections of the Coupled Global Climate Models (CGCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Assessment Report (AR) 5 of the Intergovernmental Panel on Climate Change (IPCC). These projections are used to inform on the uncertainty range of the large-scale climate change futures over the southern African region. At the Council for Scientific Industrial Research (CSIR), a dynamic regional climate model CCAM (conformal-cubic atmospheric model) of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) was used to downscale CMIP5 CGCM projections to 50 km resolution over Africa. These downscalings were for both Representative Concentration Pathway (RCP) 8.5 and Representative Concentration Pathway (RCP) 4.5 of AR5 of the IPCC. RCP 4.5 describes a future with relatively ambitious emission reductions whereas RCP 8.5 describes a future with no reductions in emissions. Emissions in RCP 4.5 peak around 2040, then decline and in RCP 8.5 emissions continue to rise throughout the 21st century. The change in temperature is expressed as an anomaly, the difference between the average climate over a period of the last several decades (1971-2000), and the projected climate (short to medium term 2021 to 2050). The simulations were performed on supercomputers of the CSIRO and on the Centre for High Performance Computing (CHPC) of the Meraka Institute of the CSIR in South Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 21 Feb 2018Publisher:Mendeley Authors: Ritchie, H;Study data and figure results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:South African Environmental Observation Network Authors: Wim Hugo;Data was derived from the following sources: * Extent of underutilised and subsistence farmland, data obtained from Department of Agriculture, Forestry, and Fisheries. * On such land, groundnut potential was calculated from data published by Schulze and Maharaj (2007) on groundnut-growing potential. * Grain, Oil, Oilcake, and Residue production was calculated based on seed yields, and aggregated to meso-zones for planning and feasibility analysis. * Grain, Oil and Residue ratios were derived from literature
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Raptis, Catherine;A global dataset of steam-electric power generating units with location, technical information, performance characteristics and associated environmental stressors (GHG emissions, freshwater consumption, thermal emissions to freshwater) as well as stressor intensities (per GJ el. produced).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu