search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
271 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 13. Climate action
  • 14. Life underwater
  • Indonesian

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Susanty, Wenny '; Helwani, Zuchra '; ', Zulfansyah ';

    Palm frond is biomass that has not been widely used as a renewable energy source. Torrefaction is a pretreatment process to improve the quality of the biomass as solid fuel. The aim of this research was to determine the condition of the process to the increase in calorific value torrefaction product. Results of the research is the calorific value and the proximate analysis torrefaction products such as moisture content, ash content, volatile content, and the content of fixed carbon. Torrefaction product calorific value in the range 17.700-19.800 kJ/kg.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Grisvia Agustin; Ro'ufah Inayati;

    Agriculture sector will be adversly affected by climate change. And as a sector that absorbs the majority of Indonesia’s employment impacts may be substantial. As the hydrological cycle is likely to be influenced b global warming, agriculture sector will have to adapt to this change. Moreover the impact on agriculture is closely linked to food security. The study aims to describe the climate change to Indonesia farmers that will result from the improved climate change management information in farming. The method used to analyze the climate change effect is descriptive method which presents economic data. The result shows that climate change reduce paddy filed and shifted the wet and dry seasons in many regions in Indonesia. The results of the study can be used by policy makers and the agencies involved in climate change information management.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Ekonomi dan S...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Ekonomi dan S...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Natalia H, Bunga; Zaman, Badrus; Syafrudin, Syafrudin;

    Briquette is a fuel substitute that can be used as an alternative and renewable energy. Bottom ash including B3 waste materials are hazardous and toxic while rice husk is an agricultural waste both solid waste is not optimal reuse. The calorific value of each waste are bottom ash according Samadhi (2008) of 3324 cal/g and rice husk according to the Ministry of Agriculture (2010), 1 kg of rice husk has a calorific value of 3300 cal/g.In this case, waste bottom ash and rice husk deserves to be reused because it has a fairly high calorific value.This study wasconductedwith a variety ofcompositionsbetweenrice huskandbottom ashusinga comparison are100%:0%;80%:20%; 60%:40%; 50%:50%; 40%:60%; 20%:80%; 0%:100%.This study uses briquettes quality testing standards including : test characteristics include heating value, moisture content, ash content (residue) ; compressive strength test ; testing of air pollutants ; and heavy metal content test using AAS (Atomic Absorption Spectrophotometer). The results showedthat theoptimumvariation ofbriquettesisa variationof 80%rice huskand20% bottom ash, this briquetteshas awater content of3.340%, ash content of51.023%, calorificvalue of3478.455cal/g, compressive stength of 2.037kg/cm2, CO 893.57mg/Nm3, Zn31.207mg/landCu 12.987mg/l. The result of the briquttes characteristics test showed that with increasing amounts ofrice huskcanincreasethe moisture contentandcalorific value, and be ableto lowerash contentandcompressive strength.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Buchori, Luqman; Widayat, Widayat;

    Crude oil is a source of energy which is not be renewable. This fact motivates so much countries ineconomizing on fuel. Many researches have been done to gets another fuel substitute the crude oil.Biodiesel is represented as fuel instead of diesel fuel, and it is produced from vegetable oil. In the otherside, ex-cooking oil is waste-product from food industry, restaurant and household which is potential tobe alternative fuels because of the high contents of carbon and hydrogen atoms. Commonly the biodieselmade from vegetable oil by esterification and transesterification process. But if using esterification andtransesterification process to ex-cooking oil material, it is not economically feasible because the processmakes another reaction between alkaly catalist and oil to produce soap. One of biodiesel process iscatalytic cracking of the ex-cooking oil. This research is aimed to analyze zeolite catalist size effect(0.125mm; 0.3375mm; 0.425mm; 0.85mm; 1.18mm), and acid concentration on the product (2N; 3N;4N). This result shows that at 4N acid concentration and 0.125 mm zeolite catalist size is optimal whichcan reach diesel specification.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2007
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2007
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sutopo Purwo Nugroho;

    The hydrological character of the rivers in Java has changed. The trend flow of upstream rivers in Java declined. Significance level of the trend decline in the upstream was large enough. This indicates that the basic flow (base flow) from these rivers has been reduced. The cause of the trend decline in river flow is strongly influenced by a combination of the effects of global climate change and the influence of anthropogenic. The influence of climate change is marked by decreasing annual rainfall. While anthropogenic influences include changes in land use, reduced water catchment area, increasing population pressures and settlements. To identify which factors are most influential between the two factors are very difficult to do because of limited data on land use change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2009
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2009
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sinaga, Nora Juniarti;

    This thesis entitled "Management Concept of Sustainability Fisherman’s Fishing Trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City". This study aims to identify what institutions are involved in the management of fisherman’s fishing trap and identify management concept that sustainability fisherman’s fishing trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City. Issues discussed in this thesis is what agencies are involved in the management of fisherman’s fishing trap, as well as how the concept of managing sustainability fisherman’s fishing trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City. Management concepts in order to chart a sustainability fisherman’s fishing trap can be viewed through three perspectives: economically sustainable, socially sustainable and ecologically sustainable. This research is a qualitative descriptive study, in which the object of this study consists of two parts: a key informant government agencies in charge of managing fisherman’s fishing trap, as well as the usual informants fisherman’s fishing trap who meet the study criteria. Instruments used data analysis is to use editing system by improving the quality of the raw data and processed in the form of frequency tables based on techniques of collecting data through observation, interview, questionnaire, and the study of literature. Through data analysis, the obtained results that the management body fisherman’s fishing trap is the Department of Marine, Fisheries and Animal Husbandry Sibolga, Sibolga Port Administrator and Sibolga Ilir District. Where the concept of management of the three institutions to have a chart of the management of its own stake in accordance with their respective capacities. The management concept of fisherman’s fishing trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City unsustainable, due to not been determined by the boundaries and the establishment of safe zones fisherman’s fishing trap, fishing trap use of excessive chart that indirect impacts on trophic structure and impact directly to the habitat. In addition to the increase in the number of saplings every year chart can directly affect the quality changes and important area of fisheries. Fisherman’s fishing trap that is not reused by fishermen and left in place will be a pollution to waters Sibolga. 117024011

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ USU Institutional Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ USU Institutional Re...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Felix S., Andreas; S.B.U., Paramitha; Ikhsan, Diyono;

    Vegetable waste is produced in a huge volume everyday. The sources of this waste are traditional market, where the waste is usually unusefull or just taken by people for feeding cows. It is actually an organic waste that can be used to make biogas. The reactions of biogas reforming are included by three steps, hydrolysis reaction, acidic reaction and methanogenic reaction. At this research we use cow manure as a mixing and as starter for methanobacteria.The intention of this research are to make biogas using vegetable waste from traditional market in batch system, to know the concentration and composition of vegetable waste, water and cow manure in slurry, and also to know the heating value and volume of biogas. Tools that used are plastic tank and simple type of floating drum biodigester with manometer that is operated in room temperature, atmospheric pressure. The dependence variables are concentration of slurry within 6-10 % (dry basic weight per volume slurry) and composition 1 : 0, 1 : 0,5 and 1 : 1 weight comparison of vegetable waste with cow manure. The data of biogas volume and heating value will be observed everyday until the production of biogas stops.Biogas is produced since the first day of digestion until 35 days. The accumulation of biogas volume is reached the highest amount in 9 % of concentration and 1 : 0,5 of composition. The analysis of heating value is being measured based on the highest volume from the best consentration and composition. Biogas can be burned on the 7th day until 30th. The highest heating value of it is about 10081 Joule/day on the 18th day. This is happen during the periode of regeneration time of methanogenic bacteria which converts the acetic acid into methane.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Muthmainnah, Lailiy;

    Modernisation as a term refers to the development processwhich has a lot of limitation, and one of this problem is aboutgarbage. Commonly, there are two big sources of garbage,industrializations and high mass consumtions. In fact, both of them are consequence of logical modernity. There are two reasons why garbage becomes a great problem in recent years. First, the quantity of garbage is overload, and second, its quality: most of the garbage is not bio-degradable. This problem will be more complicated because people usually use logic “not in my back yard” with their garbage. To respond this problem, modernity tries to transform in a new kind of development, that is usually called sustainable development. Although there are several different interpretations of sustainable development but it refers to The Brundtland Commission which defines sustainable development as a process of change in which the exploitation of resources, direction of investments, orientation of technological development, and institutional change are made consistent with future as well as present needs. For instance emphasize constancy of natural capital stock as a necessary condition for sustainability. Growth or wealth must be created without resources depletion. Exactly how this is to be achieved remains a mystery, but majority of sustainable development literature said that this condition will be achieved with using model ecological modernisation. Thus, the challenge is to find new technologies and to expand the role of the market in allocatingenvironment resources with the assumption that putting a price on the natural environment is only the way to protect it. In fact, this ways are used to solve the problem of garbage in recent years.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2008
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2008
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Saputra, Andrian; Putri, Wike Ayu Eka; Aryawati, Riris;

    Seaweed has economic value that is very important for humans. Several years ago, only seaweed used as human food ingredients. Given the many types of seaweed are still not popular yet widely used and Along with the progress of science and technology, utilization of seaweed has expanded in various fields, including one uses seaweed as an ingredient of biogas alternative energy. The purpose of this study was to determine the potential of seaweed species Sargassum duplicatum and Caulerpa racemosa for the manufacture of biogas as a new alternative energy sources and to know the pressure of gas contained in a type of seaweed Sargassum duplicatum and Caulerpa racemosa as a new alternative energy sources. This research was conducted in June-September 2010. Samples were taken in waters around Lampung Marine Aquaculture Development Center. Making biogas process is conducted at the Laboratory of Marine Science. Faculty of Mathematics and Natural Sciences, Sriwijaya University. The method used is a laboratory experimental methods. Making biogas is done by collecting seaweed and beach sediments as seedman making, preparation of the digester and the making of starter and stuffing, were examined by using biogas pressure manometer U for three months, analyze the data descriptively biogas pressure. Based on the results of research in getting the peak pressure for this type of seaweed Sargassum duplicatum is 15.47 psi, 16.05 psi and 16.43 while to get the type of Caulerpa racemosa in the peak pressure of 15.42 psi, 15.88 psi and 16, 43 psi. Rumput laut memiliki nilai ekonomis yang sangat penting bagi manusia. Beberapa tahun yang lalu, rumput laut hanya dimanfaatkan sebagai bahan makanan manusia. Mengingat masih banyaknya jenis rumput laut tidak popular yang belum banyak dimanfaatkan dan sering dengan kemajuan sains dan teknologi, pemanfaatan rumput laut telah meluas di berbagai bidang, termasuk salah satunya pemanfaatan rumput laut sebagai bahan energi alternatif yaitu biogas. Tujuan penelitian ini adalah mengetahui potensi rumput laut jenis Sargassum duplicatum dan Caulerpa racemosa untuk pembuatan biogas sebagai sumber energi alternatif baru serta mengetahui tekanan gas yang terdapat dalam rumput laut jenis Sargassum duplicatum dan Caulerpa racemosa sebagai sumber energi alternatif baru. Penelitian ini dilaksanakan pada bulan Juni – September 2010. Pengambilan sampel dilakukan di sekitar perairan Balai Pengembangan Budidaya Laut Lampung. Proses Pembuatan biogas itu sendiri dilakukan di Laboratorium Dasar Ilmu Kelautan. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sriwijaya. Metode yang digunakan adalah metode eksperimental laboratoris. Pembuatan biogas ini dilakukan dengan cara pengumpulan rumput laut dan pengambilan sedimen pantai sebagai penyemai, penyiapan digester serta pembuatan starter dan isian. Dilakukan pengamatan tekanan biogas dengan menggunakan manometer U selama tiga bulan. Analisa data tekanan biogas dilakukan secara deskriptif. Berdasarkan hasil penelitian di dapatkan tekanan puncak untuk jenis rumput laut

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2011
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2011
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nur Rohman, Muhyidin; Syafrudin, Syafrudin; Sudarno, Sudarno;

    The ever-increasing human activities that produce a lot of waste water. If this is not processed will result in a body of water pollution. So an effective treatment is needed and appropriate. Anaerobic treatment can reducing concentrations of wastewater and produce a final product in the form of biogas. The technology used is uasb. This technology has considerable efficiency and does not require extensive site. UASB technology has been spread all over the world and many are used for handling various kinds of waste.This research was conducted with variations of the HRT and concentration to see the productivity of biogas. Allowance of COD to the productivity of biogas on domestic wastewater treatment (grey water) at the optimum condition is obtained as follows: at high concentration with HRT Variation 4, 8, and 10 hours respectively allowance of COD (413.47 mg/ l, 624.57 mg/ l, mg and 700.15 mg/ l) and volume of Biogas (30,74 ml 58,89 ml, and 56,26 ml). At concentrations being high with variations of HRT 6 and 12 hours respectively allowance of COD (402,72 mg/l, and 590 mg/l) and a Volume of Biogas (46,93 ml and 27,85 ml) maximum conditions at high concentration with HRT 4 hours with the allowance of 413,47 mg/l COD and Biogas Volume 58,89 ml. The result is quite different from research by concentration of the cod more than 100,000 mg / l produce 4.59 l / day biogas.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
271 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Susanty, Wenny '; Helwani, Zuchra '; ', Zulfansyah ';

    Palm frond is biomass that has not been widely used as a renewable energy source. Torrefaction is a pretreatment process to improve the quality of the biomass as solid fuel. The aim of this research was to determine the condition of the process to the increase in calorific value torrefaction product. Results of the research is the calorific value and the proximate analysis torrefaction products such as moisture content, ash content, volatile content, and the content of fixed carbon. Torrefaction product calorific value in the range 17.700-19.800 kJ/kg.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Grisvia Agustin; Ro'ufah Inayati;

    Agriculture sector will be adversly affected by climate change. And as a sector that absorbs the majority of Indonesia’s employment impacts may be substantial. As the hydrological cycle is likely to be influenced b global warming, agriculture sector will have to adapt to this change. Moreover the impact on agriculture is closely linked to food security. The study aims to describe the climate change to Indonesia farmers that will result from the improved climate change management information in farming. The method used to analyze the climate change effect is descriptive method which presents economic data. The result shows that climate change reduce paddy filed and shifted the wet and dry seasons in many regions in Indonesia. The results of the study can be used by policy makers and the agencies involved in climate change information management.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Ekonomi dan S...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Ekonomi dan S...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Natalia H, Bunga; Zaman, Badrus; Syafrudin, Syafrudin;

    Briquette is a fuel substitute that can be used as an alternative and renewable energy. Bottom ash including B3 waste materials are hazardous and toxic while rice husk is an agricultural waste both solid waste is not optimal reuse. The calorific value of each waste are bottom ash according Samadhi (2008) of 3324 cal/g and rice husk according to the Ministry of Agriculture (2010), 1 kg of rice husk has a calorific value of 3300 cal/g.In this case, waste bottom ash and rice husk deserves to be reused because it has a fairly high calorific value.This study wasconductedwith a variety ofcompositionsbetweenrice huskandbottom ashusinga comparison are100%:0%;80%:20%; 60%:40%; 50%:50%; 40%:60%; 20%:80%; 0%:100%.This study uses briquettes quality testing standards including : test characteristics include heating value, moisture content, ash content (residue) ; compressive strength test ; testing of air pollutants ; and heavy metal content test using AAS (Atomic Absorption Spectrophotometer). The results showedthat theoptimumvariation ofbriquettesisa variationof 80%rice huskand20% bottom ash, this briquetteshas awater content of3.340%, ash content of51.023%, calorificvalue of3478.455cal/g, compressive stength of 2.037kg/cm2, CO 893.57mg/Nm3, Zn31.207mg/landCu 12.987mg/l. The result of the briquttes characteristics test showed that with increasing amounts ofrice huskcanincreasethe moisture contentandcalorific value, and be ableto lowerash contentandcompressive strength.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Buchori, Luqman; Widayat, Widayat;

    Crude oil is a source of energy which is not be renewable. This fact motivates so much countries ineconomizing on fuel. Many researches have been done to gets another fuel substitute the crude oil.Biodiesel is represented as fuel instead of diesel fuel, and it is produced from vegetable oil. In the otherside, ex-cooking oil is waste-product from food industry, restaurant and household which is potential tobe alternative fuels because of the high contents of carbon and hydrogen atoms. Commonly the biodieselmade from vegetable oil by esterification and transesterification process. But if using esterification andtransesterification process to ex-cooking oil material, it is not economically feasible because the processmakes another reaction between alkaly catalist and oil to produce soap. One of biodiesel process iscatalytic cracking of the ex-cooking oil. This research is aimed to analyze zeolite catalist size effect(0.125mm; 0.3375mm; 0.425mm; 0.85mm; 1.18mm), and acid concentration on the product (2N; 3N;4N). This result shows that at 4N acid concentration and 0.125 mm zeolite catalist size is optimal whichcan reach diesel specification.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2007
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2007
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sutopo Purwo Nugroho;

    The hydrological character of the rivers in Java has changed. The trend flow of upstream rivers in Java declined. Significance level of the trend decline in the upstream was large enough. This indicates that the basic flow (base flow) from these rivers has been reduced. The cause of the trend decline in river flow is strongly influenced by a combination of the effects of global climate change and the influence of anthropogenic. The influence of climate change is marked by decreasing annual rainfall. While anthropogenic influences include changes in land use, reduced water catchment area, increasing population pressures and settlements. To identify which factors are most influential between the two factors are very difficult to do because of limited data on land use change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2009
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2009
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sinaga, Nora Juniarti;

    This thesis entitled "Management Concept of Sustainability Fisherman’s Fishing Trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City". This study aims to identify what institutions are involved in the management of fisherman’s fishing trap and identify management concept that sustainability fisherman’s fishing trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City. Issues discussed in this thesis is what agencies are involved in the management of fisherman’s fishing trap, as well as how the concept of managing sustainability fisherman’s fishing trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City. Management concepts in order to chart a sustainability fisherman’s fishing trap can be viewed through three perspectives: economically sustainable, socially sustainable and ecologically sustainable. This research is a qualitative descriptive study, in which the object of this study consists of two parts: a key informant government agencies in charge of managing fisherman’s fishing trap, as well as the usual informants fisherman’s fishing trap who meet the study criteria. Instruments used data analysis is to use editing system by improving the quality of the raw data and processed in the form of frequency tables based on techniques of collecting data through observation, interview, questionnaire, and the study of literature. Through data analysis, the obtained results that the management body fisherman’s fishing trap is the Department of Marine, Fisheries and Animal Husbandry Sibolga, Sibolga Port Administrator and Sibolga Ilir District. Where the concept of management of the three institutions to have a chart of the management of its own stake in accordance with their respective capacities. The management concept of fisherman’s fishing trap in Sibolga Ilir District of North Sibolga Subdistrict Sibolga City unsustainable, due to not been determined by the boundaries and the establishment of safe zones fisherman’s fishing trap, fishing trap use of excessive chart that indirect impacts on trophic structure and impact directly to the habitat. In addition to the increase in the number of saplings every year chart can directly affect the quality changes and important area of fisheries. Fisherman’s fishing trap that is not reused by fishermen and left in place will be a pollution to waters Sibolga. 117024011

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ USU Institutional Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ USU Institutional Re...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Felix S., Andreas; S.B.U., Paramitha; Ikhsan, Diyono;

    Vegetable waste is produced in a huge volume everyday. The sources of this waste are traditional market, where the waste is usually unusefull or just taken by people for feeding cows. It is actually an organic waste that can be used to make biogas. The reactions of biogas reforming are included by three steps, hydrolysis reaction, acidic reaction and methanogenic reaction. At this research we use cow manure as a mixing and as starter for methanobacteria.The intention of this research are to make biogas using vegetable waste from traditional market in batch system, to know the concentration and composition of vegetable waste, water and cow manure in slurry, and also to know the heating value and volume of biogas. Tools that used are plastic tank and simple type of floating drum biodigester with manometer that is operated in room temperature, atmospheric pressure. The dependence variables are concentration of slurry within 6-10 % (dry basic weight per volume slurry) and composition 1 : 0, 1 : 0,5 and 1 : 1 weight comparison of vegetable waste with cow manure. The data of biogas volume and heating value will be observed everyday until the production of biogas stops.Biogas is produced since the first day of digestion until 35 days. The accumulation of biogas volume is reached the highest amount in 9 % of concentration and 1 : 0,5 of composition. The analysis of heating value is being measured based on the highest volume from the best consentration and composition. Biogas can be burned on the 7th day until 30th. The highest heating value of it is about 10081 Joule/day on the 18th day. This is happen during the periode of regeneration time of methanogenic bacteria which converts the acetic acid into methane.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Muthmainnah, Lailiy;

    Modernisation as a term refers to the development processwhich has a lot of limitation, and one of this problem is aboutgarbage. Commonly, there are two big sources of garbage,industrializations and high mass consumtions. In fact, both of them are consequence of logical modernity. There are two reasons why garbage becomes a great problem in recent years. First, the quantity of garbage is overload, and second, its quality: most of the garbage is not bio-degradable. This problem will be more complicated because people usually use logic “not in my back yard” with their garbage. To respond this problem, modernity tries to transform in a new kind of development, that is usually called sustainable development. Although there are several different interpretations of sustainable development but it refers to The Brundtland Commission which defines sustainable development as a process of change in which the exploitation of resources, direction of investments, orientation of technological development, and institutional change are made consistent with future as well as present needs. For instance emphasize constancy of natural capital stock as a necessary condition for sustainability. Growth or wealth must be created without resources depletion. Exactly how this is to be achieved remains a mystery, but majority of sustainable development literature said that this condition will be achieved with using model ecological modernisation. Thus, the challenge is to find new technologies and to expand the role of the market in allocatingenvironment resources with the assumption that putting a price on the natural environment is only the way to protect it. In fact, this ways are used to solve the problem of garbage in recent years.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2008
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2008
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Saputra, Andrian; Putri, Wike Ayu Eka; Aryawati, Riris;

    Seaweed has economic value that is very important for humans. Several years ago, only seaweed used as human food ingredients. Given the many types of seaweed are still not popular yet widely used and Along with the progress of science and technology, utilization of seaweed has expanded in various fields, including one uses seaweed as an ingredient of biogas alternative energy. The purpose of this study was to determine the potential of seaweed species Sargassum duplicatum and Caulerpa racemosa for the manufacture of biogas as a new alternative energy sources and to know the pressure of gas contained in a type of seaweed Sargassum duplicatum and Caulerpa racemosa as a new alternative energy sources. This research was conducted in June-September 2010. Samples were taken in waters around Lampung Marine Aquaculture Development Center. Making biogas process is conducted at the Laboratory of Marine Science. Faculty of Mathematics and Natural Sciences, Sriwijaya University. The method used is a laboratory experimental methods. Making biogas is done by collecting seaweed and beach sediments as seedman making, preparation of the digester and the making of starter and stuffing, were examined by using biogas pressure manometer U for three months, analyze the data descriptively biogas pressure. Based on the results of research in getting the peak pressure for this type of seaweed Sargassum duplicatum is 15.47 psi, 16.05 psi and 16.43 while to get the type of Caulerpa racemosa in the peak pressure of 15.42 psi, 15.88 psi and 16, 43 psi. Rumput laut memiliki nilai ekonomis yang sangat penting bagi manusia. Beberapa tahun yang lalu, rumput laut hanya dimanfaatkan sebagai bahan makanan manusia. Mengingat masih banyaknya jenis rumput laut tidak popular yang belum banyak dimanfaatkan dan sering dengan kemajuan sains dan teknologi, pemanfaatan rumput laut telah meluas di berbagai bidang, termasuk salah satunya pemanfaatan rumput laut sebagai bahan energi alternatif yaitu biogas. Tujuan penelitian ini adalah mengetahui potensi rumput laut jenis Sargassum duplicatum dan Caulerpa racemosa untuk pembuatan biogas sebagai sumber energi alternatif baru serta mengetahui tekanan gas yang terdapat dalam rumput laut jenis Sargassum duplicatum dan Caulerpa racemosa sebagai sumber energi alternatif baru. Penelitian ini dilaksanakan pada bulan Juni – September 2010. Pengambilan sampel dilakukan di sekitar perairan Balai Pengembangan Budidaya Laut Lampung. Proses Pembuatan biogas itu sendiri dilakukan di Laboratorium Dasar Ilmu Kelautan. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sriwijaya. Metode yang digunakan adalah metode eksperimental laboratoris. Pembuatan biogas ini dilakukan dengan cara pengumpulan rumput laut dan pengambilan sedimen pantai sebagai penyemai, penyiapan digester serta pembuatan starter dan isian. Dilakukan pengamatan tekanan biogas dengan menggunakan manometer U selama tiga bulan. Analisa data tekanan biogas dilakukan secara deskriptif. Berdasarkan hasil penelitian di dapatkan tekanan puncak untuk jenis rumput laut

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2011
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2011
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nur Rohman, Muhyidin; Syafrudin, Syafrudin; Sudarno, Sudarno;

    The ever-increasing human activities that produce a lot of waste water. If this is not processed will result in a body of water pollution. So an effective treatment is needed and appropriate. Anaerobic treatment can reducing concentrations of wastewater and produce a final product in the form of biogas. The technology used is uasb. This technology has considerable efficiency and does not require extensive site. UASB technology has been spread all over the world and many are used for handling various kinds of waste.This research was conducted with variations of the HRT and concentration to see the productivity of biogas. Allowance of COD to the productivity of biogas on domestic wastewater treatment (grey water) at the optimum condition is obtained as follows: at high concentration with HRT Variation 4, 8, and 10 hours respectively allowance of COD (413.47 mg/ l, 624.57 mg/ l, mg and 700.15 mg/ l) and volume of Biogas (30,74 ml 58,89 ml, and 56,26 ml). At concentrations being high with variations of HRT 6 and 12 hours respectively allowance of COD (402,72 mg/l, and 590 mg/l) and a Volume of Biogas (46,93 ml and 27,85 ml) maximum conditions at high concentration with HRT 4 hours with the allowance of 413,47 mg/l COD and Biogas Volume 58,89 ml. The result is quite different from research by concentration of the cod more than 100,000 mg / l produce 4.59 l / day biogas.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.