search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
156 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • 12. Responsible consumption
  • 6. Clean water
  • 9. Industry and infrastructure
  • IT University of Copenhagen

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ahmad Arabkoohsar;
    Ahmad Arabkoohsar
    ORCID
    Harvested from ORCID Public Data File

    Ahmad Arabkoohsar in OpenAIRE
    Krishna Hara Chakravarty; orcid Amirmohammad Behzadi;
    Amirmohammad Behzadi
    ORCID
    Harvested from ORCID Public Data File

    Amirmohammad Behzadi in OpenAIRE
    orcid Meisam Sadi;
    Meisam Sadi
    ORCID
    Harvested from ORCID Public Data File

    Meisam Sadi in OpenAIRE

    Abstract In the present study, a novel design of large-scale biomass-based heat-driven building cooling system is proposed and investigated for different regions of India. The study is enriched by a thorough benchmarking analysis of various scenarios (24 scenarios in total) for assessing the influence of different types of biomass, various configurations of the cooling system, and different biomass heater layouts on thermodynamic, economic, and environmental aspects of the proposed solution. For this, developing a MATLAB code, hourly, monthly, and annual comparisons are made to ascertain the best scenario from different aspects. The economic investigations reveal the superiority of the scenario comprising a specific design of biomass-heater using Prosopis and double-effect chiller with the lowest levelized cost of cooling (LCOC) of 0.031 $/kWh. The integration of a double-effect chiller with this heater using wood chips leads to the lowest emission index of 0.19 kg/kWh. The results further demonstrate that the LCOC is highly sensitive to the fluctuation of the cost of the biomass type, which is a function of availability in different regions of India. Therefore, the study is a secure reference indicating which scenario would result in the best techno-economic-environmental performance among all possibilities in different areas of the country.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    42
    citations42
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rajvikram Madurai Elavarasan; orcid Rishi Pugazhendhi;
    Rishi Pugazhendhi
    ORCID
    Harvested from ORCID Public Data File

    Rishi Pugazhendhi in OpenAIRE
    orcid G.M. Shafiullah;
    G.M. Shafiullah
    ORCID
    Harvested from ORCID Public Data File

    G.M. Shafiullah in OpenAIRE
    orcid Muhammad Irfan;
    Muhammad Irfan
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Irfan in OpenAIRE
    +1 Authors

    The COVID-19 pandemic affects all of society and hinders day-to-day activities from a straightforward perspective. The pandemic has an influential impact on almost everything and the characteristics of the pandemic remain unclear. This ultimately leads to ineffective strategic planning to manage the pandemic. This study aims to elucidate the typical pandemic characteristics in line with various temporal phases and its associated measures that proved effective in controlling the pandemic. Besides, an insight into diverse country's approaches towards pandemic and their consequences is provided in brief. Understanding the role of technologies in supporting humanity gives new perspectives to effectively manage the pandemic. Such role of technologies is expressed from the viewpoint of seamless connectivity, rapid communication, mobility, technological influence in healthcare, digitalization influence, surveillance and security, Artificial Intelligence (AI), and Internet of Things (IoT). Furthermore, some insightful scenarios are framed where the full-fledged implementation of technologies is assumed, and the reflected pandemic impacts in such scenarios are analyzed. The framed scenarios revolve around the digitalized energy sector, an enhanced supply chain system with effective customer-retailer relationships to support the city during the pandemic scenario, and an advanced tracking system for containing virus spread. The study is further extended to frame revitalization strategies to highlight the expertise where significant attention needs to be provided in the post-pandemic period as well as to nurture sustainable development. Finally, the current pandemic scenario is analyzed in terms of occurred changes and is mapped into SWOT factors. Using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution based Multi-Criteria Decision Analysis, these SWOT factors are analyzed to determine where prioritized efforts are needed to focus so as to traverse towards sustainable cities. The results indicate that the enhanced crisis management ability and situational need to restructure the economic model emerges to be the most-significant SWOT factor that can ultimately support humanity for making the cities sustainable.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Cities a...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Cities and Society
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    78
    citations78
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Cities a...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Cities and Society
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lars J Nilsson; orcid Fredric Bauer;
    Fredric Bauer
    ORCID
    Harvested from ORCID Public Data File

    Fredric Bauer in OpenAIRE
    orcid Teis Hansen;
    Teis Hansen
    ORCID
    Harvested from ORCID Public Data File

    Teis Hansen in OpenAIRE
    Teis Hansen;

    Abstract Analyses of the future for manufacturing and heavy industries in a climate constrained world many times focus on technological innovations in the early stages of the value chain, assuming few significant changes are plausible, wanted, or necessary throughout the rest of the value chain. Complex questions about competing interests, different ways of organising resource management, production, consumption, and integrating value chains are thus closed down to ones about efficiencies, pay-back times, and primary processing technologies. In this analysis, we move beyond this to identify archetypal pathways that span across value chains in four emissions intensive industries: plastics, steel, pulp and paper, and meat and dairy. The pathways as presented in the present paper were inductively identified in a multi-stage process throughout a four-year European research project. The identified archetypal pathways are i) production and end-use optimisation, ii) electrification with CCU, iii) CCS, iv) circular material flows, and v) diversification of bio-feedstock use. The pathways are at different stages of maturity and furthermore their maturity vary across sectors. The pathways show that decarbonisation is likely to force value chains to cross over traditional boundaries. This implies that an integrated industrial and climate policy must handle both sectoral specificities and commonalities for decarbonised industrial development.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Resources Conservati...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Resources Conservation and Recycling
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Resources Conservation and Recycling
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Resources Conservati...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Resources Conservation and Recycling
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Resources Conservation and Recycling
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Haleem Fazli; Sami Farooq; orcid Cheng Yang;
    Cheng Yang
    ORCID
    Harvested from ORCID Public Data File

    Cheng Yang in OpenAIRE
    orcid bw Brian Vejrum Wæhrens;
    Brian Vejrum Wæhrens
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Brian Vejrum Wæhrens in OpenAIRE

    This study aims to analyse the two competing conceptual models driving the relationships of external pressure, sustainable practices, and sustainability performance. The understanding of such relationships is important in enabling manufacturers to strategically manage external pressure and engage in sustainable transition. Using a sample of 202 plants from the Sixth International Manufacturing Strategy Survey (IMSS-VI), this research tests two hypotheses: (1) the role of sustainable practices in mediating the relationship between external pressure and environmental and social performance, and (2) the role of external pressure in moderating the link between sustainable practices and environmental and social performance. These hypotheses are tested through the hierarchical regression analysis and bootstrapping method. The findings show the mediating role of sustainable practices in the relationship between external pressure and environmental performance, suggesting a reactive approach to environmentally oriented sustainable practices adoption. Furthermore, the results show the moderating role of external pressure on the relationship between sustainable practices and social performance, indicating that plants take a proactive approach to the adoption of socially oriented sustainable practices for improving social performance of the buying firms, whereas there is no moderating effect for environmental performance. Studies addressing the relationships between external pressure, sustainable practices, and sustainability performance in the context of emerging economies (China and India) are limited, so there is a need to address these relationships in this context for generalisation. Studies that address the sustainability outcomes consisting of both environmental and social performance of the reactive and proactive approaches to sustainability initiatives in emerging economies are lacking. This research adds to the literature by investigating the sustainability outcomes of reactive and proactive methods in two emerging countries, China and India. The distinction between reactive and proactive approaches has important implications for sustainability performance in the context of emerging economies, as the rapid growth of these economies raises a number of sustainability issues.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim
    Access Routes
    Green
    gold
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Mahmood Laghari;
    Mahmood Laghari
    ORCID
    Harvested from ORCID Public Data File

    Mahmood Laghari in OpenAIRE
    orcid Dorette Sophie Müller-Stöver;
    Dorette Sophie Müller-Stöver
    ORCID
    Harvested from ORCID Public Data File

    Dorette Sophie Müller-Stöver in OpenAIRE
    orcid Maria Puig-Arnavat;
    Maria Puig-Arnavat
    ORCID
    Harvested from ORCID Public Data File

    Maria Puig-Arnavat in OpenAIRE
    orcid Tobias Pape Thomsen;
    Tobias Pape Thomsen
    ORCID
    Harvested from ORCID Public Data File

    Tobias Pape Thomsen in OpenAIRE
    +1 Authors

    Abstract This study evaluates the potential to produce phosphorus (P)-rich fertilizer substrates with high plant availability as well as carbon (C)-rich biochar with soil enhancement properties in a single slow-pyrolysis plant. Campaign-based production or co-production of soil enhancers and fertilizer substrates may increase the potential societal value of slow pyrolysis plants. The assessment focus on conventional slow pyrolysis operated at 600 °C to produce biochar from various substrates as well as two options for post-process char treatments—char oxidation at 550 °C and char steam gasification at 800 °C, as a potential way to improve substrate fertilizer value. Four P-rich biomass residues including municipal sewage sludge (SS), biogas fiber (BF), cattle manure (CM), and poultry manure (PM) as well as two C-rich biomasses: wood chips (WC) and wheat straw (WS), were tested. Production yields of biochar and ash from char oxidation and steam gasification were compared and the materials were characterized to be used as soil enhancers and P-fertilizers through direct analysis and soil incubation studies with two different agricultural soils. All thermal treatments increased the concentration of the plant nutrients P, potassium and magnesium in the resulting biochar and ashes compared to the dry biomass. At the same time, concentrations of nitrogen and sulfur were reduced. The dry biomasses generally increased the amount of available P in the soils to a greater extent than biochar or ashes at an application rate of 80 mg P/kg soil. The P-rich biochar and ash made from BF, CM and PM had higher P fertilizer values than those made from SS. In terms of thermal processes, pyrolysis with subsequent char steam gasification was found to be the best option for high P availability in both soils, except for operation on SS where the oxidized char gave the best results. The C-rich biochars made from wood and wheat straw both showed potential for improving soil properties including soil organic matter (SOM) content, cation exchange capacity (CEC) and water holding capacity (WHC). The study shows that campaign operation of slow pyrolysis with the option for char steam gasification is a viable option for producing fertilizer substrates with high levels of plant available P as well as biochar with substantial soil enhancing properties on a single plant. In addition, results also indicate that direct co-pyrolysis of P-rich substrates—especially BF and CM, with any of the two tested C-rich substrates—without subsequent char treatment may be a sufficiently well integrated option for combined soil fertility and soil P fertilization management. Graphic Abstract

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waste and Biomass Va...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Waste and Biomass Valorization
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Waste and Biomass Valorization
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waste and Biomass Va...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Waste and Biomass Valorization
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Waste and Biomass Valorization
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Francesco Capozzi;
    Francesco Capozzi
    ORCID
    Harvested from ORCID Public Data File

    Francesco Capozzi in OpenAIRE
    Fabio Fava; orcid Gregorio P. Milani;
    Gregorio P. Milani
    ORCID
    Harvested from ORCID Public Data File

    Gregorio P. Milani in OpenAIRE
    Gregorio P. Milani; +5 Authors

    Ultra-processed foods (UPFs) are negatively perceived by part of the scientific community, the public, and policymakers alike, to the extent they are sometimes referred to as not “real food”. Many observational surveys have linked consumption of UPFs to adverse health outcomes. This narrative synthesis and scientific reappraisal of available evidence aims to: (i) critically evaluate UPF-related scientific literature on diet and disease and identify possible research gaps or biases in the interpretation of data; (ii) emphasize the innovative potential of various processing technologies that can lead to modifications of the food matrix with beneficial health effects; (iii) highlight the possible links between processing, sustainability and circular economy through the valorisation of by-products; and (iv) delineate the conceptual parameters of new paradigms in food evaluation and classification systems. Although greater consumption of UPFs has been associated with obesity, unfavorable cardiometabolic risk factor profiles, and increased risk for non-communicable diseases, whether specific food processing techniques leading to ultra-processed formulations are responsible for the observed links between UPFs and various health outcomes remains elusive and far from being understood. Evolving technologies can be used in the context of sustainable valorisation of food processing by-products to create novel, low-cost UPFs with improved nutritional value and health potential. New paradigms of food evaluation and assessment should be funded and developed on several novel pillars—enginomics, signalling, and precision nutrition—taking advantage of available digital technologies and artificial intelligence. Research is needed to generate required scientific knowledge to either expand the current or create new food evaluation and classification systems, incorporating processing aspects that may have a significant impact on health and wellness, together with factors related to the personalization of foods and diets, while not neglecting recycling and sustainability aspects. The complexity and the predicted immense size of these tasks calls for open innovation mentality and a new mindset promoting multidisciplinary collaborations and partnerships between academia and industry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nutrients
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nutrients
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nutrients
    Article . 2021
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nutrients
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nutrients
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nutrients
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nutrients
      Article . 2021
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nutrients
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Kikki Lambrecht Ipsen;
    Kikki Lambrecht Ipsen
    ORCID
    Harvested from ORCID Public Data File

    Kikki Lambrecht Ipsen in OpenAIRE
    orcid Massimo Pizzol;
    Massimo Pizzol
    ORCID
    Harvested from ORCID Public Data File

    Massimo Pizzol in OpenAIRE
    orcid Morten Birkved;
    Morten Birkved
    ORCID
    Harvested from ORCID Public Data File

    Morten Birkved in OpenAIRE
    orcid Ben Amor;
    Ben Amor
    ORCID
    Harvested from ORCID Public Data File

    Ben Amor in OpenAIRE

    The building sector is responsible for extensive resource consumption and waste generation, resulting in high pressure on the environment. A way to potentially mitigate this is by including environmental considerations during building design through the concept known as eco-design. Despite the multiple available approaches of eco-design, the latter is not easily achieved in the building sector. The objective of this paper is to identify and discuss what barriers are currently hindering the implementation of eco-design in the building sector and by which measures building designers can include environmental considerations in their design process. Through a systematic literature review, several barriers to implementation were identified, the main ones being lack of suitable legislation, lack of knowledge amongst building designers, and lack of suitable tools for designers to use. Furthermore, two specific tools were identified that allow the inclusion of environmental consideration in building design, along with nine design strategies providing qualitative guidance on how to potentially minimize energy and material consumption, as well as waste generation. This paper contributes a holistic overview of the major barriers to and existing tools and method for the eco-design of buildings, and provides guidance for both future research and practice.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Urban Sciencearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Urban Science
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Urban Science
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Urban Science
    Article . 2021
    Data sources: DOAJ
    addClaim
    Access Routes
    Green
    gold
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Urban Sciencearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Urban Science
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Urban Science
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Urban Science
      Article . 2021
      Data sources: DOAJ
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kamal Shahid;
    Kamal Shahid
    ORCID
    Harvested from ORCID Public Data File

    Kamal Shahid in OpenAIRE
    orcid Karthikeyan Nainar;
    Karthikeyan Nainar
    ORCID
    Harvested from ORCID Public Data File

    Karthikeyan Nainar in OpenAIRE
    orcid bw Rasmus Lovenstein Olsen;
    Rasmus Lovenstein Olsen
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Rasmus Lovenstein Olsen in OpenAIRE
    orcid Florin Iov;
    Florin Iov
    ORCID
    Harvested from ORCID Public Data File

    Florin Iov in OpenAIRE
    +2 Authors

    Data integration from heterogeneous data sources in low-voltage (LV) power distribution grids will be valuable to distribution system operators (DSOs). The power measurements from customer premises need to be processed with other data such as grid topology, line parameters etc., to deploy smart grid applications (SGA) such as real-time grid monitoring and voltage regulation. The most challenging task for DSOs is to collect and integrate data from several sources as several entities are involved in the data management and access to databases are restricted. This paper presents an op E n common information ${M}$ odel (CIM) BA sed sma ${R}$ t grid application framewor ${K}$ ( EMBARK ) to address the above-mentioned challenge. EMBARK is developed to be an efficient, modular and scalable architecture for extracting relevant grid related information from various asset management databases. A novel data management functionality is a part of EMBARK that enables data-driven update of settings and parameters of the algorithms behind smart grid applications. The proposed approach is demonstrated and numerically validated using grid data from a medium-sized distribution grid operator in Denmark. The architecture developed and presented in this paper can support all the phases from planning to the actual smart grid operation, i.e., automatically building the models to perform load flows, grid impact studies, planning, asset management etc.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Smart Grid
    Article . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Smart Grid
      Article . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ahmad Arabkoohsar;
    Ahmad Arabkoohsar
    ORCID
    Harvested from ORCID Public Data File

    Ahmad Arabkoohsar in OpenAIRE
    Krishna Hara Chakravarty; orcid Amirmohammad Behzadi;
    Amirmohammad Behzadi
    ORCID
    Harvested from ORCID Public Data File

    Amirmohammad Behzadi in OpenAIRE
    orcid Meisam Sadi;
    Meisam Sadi
    ORCID
    Harvested from ORCID Public Data File

    Meisam Sadi in OpenAIRE

    Abstract This work proposes a novel hybrid renewable-based cold production system consisting of an innovative yet simple design of evacuated solar collectors integrated with a biomass heater, thermal storage tanks, and an absorption machine. The optimal design, sizing of the components, and operating conditions of the hybrid system are investigated via thorough techno-economic modeling and dual-objective optimizations for a case study in India. In addition, the assessments cover different designs of biomass heaters and various biomass types. Finally, using the coefficient of performance (COP), the levelized cost of cooling (LCOC), and the emission index as the prioritization parameters, the most efficient, the most cost-effective, and the most environmentally-friendly configurations are indicated. The results show that integrating evacuated plate collectors with a specific design of biomass-heater burning sugarcane baggas is the most appropriate option from all aspects. According to the optimization results, at the best solution point, emission index and LCOC are, respectively, 440.62 kg/MWh and 47.1 USD/MWh. Moreover, the scatter distribution of major decision parameters indicates that while the volume of the hot storage tank is not a sensitive parameter, the chiller temperature and volume of the cold storage tank should be kept at their lowest bounds.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Ana Paula Maria da Silva;
    Ana Paula Maria da Silva
    ORCID
    Harvested from ORCID Public Data File

    Ana Paula Maria da Silva in OpenAIRE
    orcid bw Pietro Sica;
    Pietro Sica
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Pietro Sica in OpenAIRE
    orcid Lucas de Almeida Nobre Pires;
    Lucas de Almeida Nobre Pires
    ORCID
    Harvested from ORCID Public Data File

    Lucas de Almeida Nobre Pires in OpenAIRE
    Liandra Spironello; +11 Authors

    Recently, in Brazil, corn ethanol industries are being installed and the integration with sugar/energy-cane has been proposed, using bagasse for cogeneration and the juice to dilute the corn. However, this integration may have some limitations, such as the quality of the cane juice and potential contamination by microorganisms brought with the cane from the field. In this article, we first tested the effects of mixing energy cane juice with corn on fermentative parameters. We also assessed the effects of Lactobacilli. contamination on organic acids produced during the fermentation and fermentation parameters and proposed the use of ionizing radiation to replace antibiotics as a disinfection control method. Our results showed that mixing energy cane juice with corn does not have any negative effect on fermentation parameters, including ethanol production. The contamination with Lactobacilli. considerably increased the production of acetic, lactic, and succinic acid, reducing the pH and ethanol content from 89.2 g L−1 in the sterilized treatment to 72.9 g L−1 in the contaminated treatment. Therefore, for the integration between corn and cane to be applied on an industrial scale, it is essential to have effective disinfection before fermentation. Ionizing radiation (20 kGy) virtually disinfected the wort, showing itself to be a promising technology; however, an economic viability study for adopting it in the industry should be carried out.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fermentationarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fermentation
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fermentation
    Article . 2023
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fermentationarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fermentation
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fermentation
      Article . 2023
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim